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1 Introduction

This work arises from the research of the Metaheuristics Network1 on the University Course Time-
tabling Problem. In a first phase straightforward implementations of different metaheuristics were
compared on a common local search framework [4]. In a second phase problem specific knoweldge
was exploited and several alternatives for local search and metaheuristics were considered. Many
possibilities to combine different components in a hybrid algorithm arose and a large experimental
analysis that involved about 1185 configurations identified the most promising algorithm. This re-
port describes this algorithm which was submitted to the International Timetabling Competition
and the experimental methodology used to select it among many alternatives.

2 Local Search

The problem is solved in two distinct phases. In a first phase, only hard constraints are considered
and solved. When a feasible assignment is reached, that is, no hard constraint is violated anymore,
a second phase, that tries to reduce the number of soft constraint violations without breaking any
hard constraint, begins.

2.1 The assignment representation

As suggested in the work of Socha [5], an assignment of events to rooms and timeslots can be
defined by a rectangular matrix Xr×t, such that rows represent rooms and columns represent
timeslots, where r and t are respectively the number of rooms and of timeslots in the problem.
To each cell of the table is assigned a number k ∈ {−1, 0, . . . , e} corresponding to an event.

1More information on the Metaheuristics Network research programme is available at
http://www.metaheuristics.org
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Specifically if xi,j = k, event Ek is assigned to room Ri in timeslot Tj , if xi,j = −1, the room
Ri in timeslot Tj is free. With this representation we assure that there will be no more than one
event assigned to each room in any timeslot, which means one of the hard constraints will always
been satisfied.

The room assignment can be done by some heuristic search or by a matching algorithm. The
matching algorithm used is the one implemented by Rossi-Doria [3]. For every timeslot it is
considered the list of events taking place in it and a preprocessed list of possible rooms to which
these events can be assigned. The matching algorithm gives a maximum cardinality matching
between these two sets using a deterministic network flow algorithm. In the following, however,
we assume that the room assignment is left to the specific local search or metaheuristic unless
where explicitly stated.

2.2 Neighborhoods

Different neighborhood schemes are used in the two phases of the search process. For the first
phase, in which only hard constraints are considered, we define two neighborhoods:

1. the neighborhood N1 is defined by the operator that moves a single event to a different
timeslot. Formally, given an event Ek assigned to Ri in Tj and a location in the assignment
matrix, Xl,m = −1, the assignment obtained by this operator is the current assignment with
Xi,j = −1 and Xl,m = k.

2. the neighborhood N2 is defined by the operator that swaps the timeslots and rooms of two
events. Formally, given two events Eh and Ek assigned respectively to Rl in Tm and to Ri

in Tj , the assignment obtained by this operator is the current assignment with Xl,m = k
and Xi,j = h.

With respect to the soft constraint phase, we define the neighborhoods N ′
1 ⊂ N1, N ′

2 ⊂ N2,
obtained by limiting the moves to only those neighbors that do not introduce violations of the
hard constraints and two other neighborhoods:

3. the neighborhood N3 is defined by the operator that swaps events assigned to two timeslots.
Formally, given two timeslots Tj and Tm the assignment obtained by this operator is the
current assignment X with the two columns i and m swapped.

4. the neighborhood N4 is defined by Kempe chain interchanges. If we focus only on events
and timeslots, an assignment can be determined by a partition T of a graph G where nodes
are events and edges connect events with students in common. A feasible assignment is, a
partition of the graph in which no adjacent nodes are in the same class. A Kempe chain
is the set of nodes that form a connected component in the subgraph G′ of G induced by
the nodes that belong to two timeslot classes Ti and Tj , i 6= j. A Kempe chain interchange
produces a new feasible assignment by swapping the timeslot class labels assigned to the
events (vertices) belonging to some specified Kempe chain. More formally: let K be a
Kempe chain in the subgraph G′, a Kempe chain interchange produces an assignment by
replacing Ti with (Ti \ K) ∪ (Tj ∩ K) and Tj with (Tj \ K) ∪ (Ti ∩ K). We note that if
K = Ti ∪ Tj , the interchange would be simply a relabeling of the timeslots as done by
neighborhood N3. As far as the room assignment is concerned, it is done deterministically
after a Kempe chain interchange by the matching algorithm. If this is not possible the
current Kempe chain interchange would require to break feasibility and therefore it is not
allowed.

2.3 Search strategy and evaluation function

The local search in all cases is a stochastic first improvement local search. Depending on the phase
that we are trying to solve, the objective function f(s) is given by the sum of the hard constraint
violations (hcvs) or the soft constraint violations (scvs). The contribution given by each violation
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Procedure 1 The over-all procedure.
Input: A problem instance
1: create a population of assignments
2: for i=1 to max heur do
3: si ← build an assignment with Heuristic i
4: si ← apply Hard Constraint Phase to si

5: si ← assignment after applying LSFAST
SC in N ′

1 to s
6: si ← assignment after applying LSFAST

SC in N ′
1 ∪N ′

2 to s′

7: end for
8: sbest ← select the best assignment for I in the population
9: sbest ← apply Soft Constraint Phase to sbest

Output: An optimized assignment sbest for I

is one and soft constraints are not considered when solving hard constraints. The search strategy
uses a list of events randomly ordered and goes through it trying the moves available in the given
neighborhood until an improvement is found. Delta evaluation of neighbors for the evaluation
function is extensively used for speeding up the search. When all the list is visited without finding
any improvement the local search ends and a local optimum has been reached. Side walk moves,
i.e. moves that do not change the evaluation function value, are performed with different criteria
in the hard and soft constraint phase. In the case of hard constraints they are not accepted for
N2 while for N1 they are accepted with a probability p given by:

p =
g(Rj)

g(Ri) · g(Rj)

where Ri and Rj are respectively the room of origin and of destination of the event considered
for the move and g gives the number of events for which the room is suitable. The aim is to
favor moves towards rooms that are suitable for many events since this should result in an easier
assignment of the other events. In the soft constraint phase, instead, side walk moves are always
accepted both in N ′

1 and N ′
2. In the feasible region, indeed, we have the impression that the fitness

landscape presents large plateaus and therefore it appears better to move through there in order
to discover new valleys.

3 The overall procedure

The overall procedure for solving the Course Timetabling Problem is outlined schematically
in Procedure 1. At the beginning a population of assignments is considered. Each assignment is
initialized with a different construction heuristic and a Hard Constraint Phase is applied to solve
hard constraints. A fast soft constraint local search is then applied to each individual for having
an indication of how promising it would be this assignment when soft constraints are tackled.
LSFAST

SC is a local search that involves only events which cause soft constraint violation.
As suggested by Rossi-Doria and Paechter [2] to build an assignment we use a sequential

algorithm that inserts events into the timetable one at a time. Procedure 2 outlines this process.
A heuristic to chose which event to insert in the timeslot next and a heuristic to assign a room

and a timeslot to the chosen event are needed. We considered 6 heuristics H to choose the event
and 11 heuristics A to assign room and timeslot. Heuristics for H are the following:

• event with maximum number of correlated events (events that cannot stay in the same
timeslot because they share students)
• event with the maximum number of correlated events weighted by the number of students

shared
• among events with maximum number of students, one with maximum number of correlated

events
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Procedure 2 Construction procedure.
Input: A problem instance
1: while ∃ event unscheduled do
2: let SE be the set of all the unscheduled events
3: choose an event E in SE according to heuristic H
4: let SRT be the set of all possible room/timeslot assignments for E causing minimal hard

constraint violations
5: let S be the subset of the assignments in SRT causing minimal soft constraint violations
6: choose an assignment for E in S according to heuristic A
7: end while

Output: An initialized assignment

• among events with minimum number of possible rooms, one with maximum number of
correlated events
• among events with maximum number of required features, one with maximum number of

correlated events
• among events with rooms suitable for most events, one with maximum number of correlated

events

While, heuristics for A are:

• label order
• random order
• 3 pre-established timeslot order, keeping adjacent timeslots apart and rooms in label order
• smallest possible room, most parallel classes in a timeslot
• least used room and timeslot in label order
• last day, last timeslot, room suitable for least events
• room suitable for least events and last timeslot
• room suitable for least events and timeslot in label order
• among earliest timeslot during the day, one with most parallel classes, rooms in label order

All 66 possible combinations are considered since in a preliminary experimental analysis no
evidence arose to prefer one among the other. Yet it appeared that different instances required
different construction heuristics. A restriction to a group of promising ones is however one possible
future development.

In the initial population we included also an assignment built assigning randomly a timeslot
to each event according to an uniform distribution, and applying the matching algorithm for
choosing rooms. If the matching algorithm cannot find a room for all the events assigned to a
specific timeslot, the unplaced events are rescheduled into another timeslot and into a free room
trying to minimize the hard constraint conflicts that their insertion would create.

To sum up, 67 possible ways to generate an initial assignment (max heur) are considered in
our approach.

Hard Constraint Phase

Procedure 3 outlines the hard constraint phase. First, the local search (LSHC) is applied
iteratively, then if after 10 local search iterations feasibility has not yet been reached, tabu search
(TSHC) is used to escape local optima and continue further the search. Tabu search is not applied
since the beginning because from experimental observations we noticed that it would require much
more time to find a feasible assignment. The fast descent provided by local search, instead, helps
to get very close to a feasible assignment, then easily reached by tabu search. We remind also that
local search can accept side walk moves and, therefore, a re-run can provide improvements.
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Procedure 3 The Hard Constraint Phase.
Input: A problem instance I, an initialized assignment s
1: loops← 0
2: while hcvs > 0 and time limit not reached do
3: s← assignment after applying LSHC in N1 ∪N2 to s
4: if hcvs > 0 and loops > 10 then
5: s← assignment after applying TSHC in N1 to s
6: end if
7: loops← loops + 1
8: end while

Output: A feasible assignment s for I

Procedure 4 The Soft Constraint Phase.
Input: A problem instance I, a feasible assignment s
1: s′ ← s
2: repeat
3: s← s′

4: s′ ← assignment after applying LSSC in N ′
1 to s

5: s′ ← assignment after applying LSSC in N ′
1 ∪N ′

2 to s′

6: s′ ← assignment after applying LSMA
SC in N ′

1 to s′

7: s′ ← assignment after applying LSMA
SC in N ′

1 and N ′
2 to s′

8: s′ ← assignment after applying LSSC in N ′
3 to s′

9: s′ ← assignment after applying LSSC in N ′
4 to s′

10: until f(s′) = f(s) or time limit reached
11: sbest ← best assignment found after applying SAMA

SC in N1 and N2 to s
Output: An optimized assignment sbest for I

Local Search in N1 ∪ N2 goes through the list of randomly ordered events and for each event
it tries a move in a place chosen at random in the matrix X. If the destination place is occupied
by another event then the move is a move in N2 otherwise if the place is free the move is in N1.

Tabu Search. Tabu Search uses a best improvement strategy on the N1 neighborhood. In
order to reduce the size of the neighborhood, only events which are involved in constraint violations
are considered. We forbid a move if it tries to place an event in a timeslot to which it was assigned
less than tl steps before. The tabu length tl is set equal to ran(10) + δ · nc where ran(10) is a
random number in [0, 10], nc is the number of events in the current assignment involved in at
least one hard constraint violation and δ is a parameter to be decided. The aspiration criterion
accepts a tabu move if it improves the best known assignment. The procedure ends when the best
assignment is not improved for a given number of steps. We fixed this number to 0.4 · t · e · r and
δ to 0.6

Soft Constraint Phase

The Soft Constraint Phase is sketched in Procedure 4. It consists of two parts. First several local
search operators (LSSC) on different neighborhoods are applied until no further improvements can
be found, then Simulated Annealing (SAMA

SC ) is applied until the end of the time available. The
reason behind this is that usually SA gets good performance when long computational time are
allowed. But the SA acceptance criterion is mainly useful at the end of the search for getting out
from local optima. Therefore, trying to start SA from a local optimum should produce competitive
results as it was shown by experimental observations.

The soft constraint local search of lines 4 and 5 uses the same search strategy as described for
the hard constraint phase. The local search of lines 6 and 7, instead, does something different. It
uses the matching algorithm (LSMA

SC ) to insert events in a timeslot. This introduces at each step
larger modifications in the assignment matrix which are useful for a diversification of the search.
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Furthermore, the use of the matching algorithm increases the possibilities to find a place for an
event in a specific timeslot. LSMA

SC on N1 simply scans the list of events trying to insert them
into another timeslot. Running the matching algorithm, which is computationally expensive, is
avoided when the timeslot has already a number of events assigned equal to the number of rooms.
LSMA

SC in N1 and N2 tries first for each event all the possible swaps with the events in a destination
timeslot, then, if no feasible swap is found, it tries a simple insertion in the timeslot. Side moves
are always accepted.

The procedures LSSC in N3 and LSSC in N4 work on the timeslots and all possible pairs of
timeslots are scanned in random order. In N3 for each pair of timeslots all the possible Kempe
chains are considered. Side walk moves are not accepted in this case due to the higher computa-
tional cost of performing Kempe chains; the aim, suggested by preliminary experiments, is, indeed,
to reach the best possible assignment to pass to Simulated Annealing in the shortest time.

Simulated Annealing. In Simulated Annealing a move is accepted according to the following
probability distribution, dependent on the virtual temperature T :

paccept(T, s, s′) =

{
1 if f(s′) ≤ f(s)

e−
(f(s′)−f(s))

T otherwise

where s is the current assignment and s′ is the neighbor assignment. The temperature parameter
T , which controls the acceptance probability, is allowed to vary over the course of the search
process.

We describe our implementation distinguishing the following components: neighborhood ex-
ploration strategy, initial temperature, temperature length and cooling schedule. A specific stop-
ping criterion is not needed since we use the time limit imposed by the competition.

Neighborhood examination strategy : Events are randomly ordered in a list and in turn examined.
For each event a timeslot is randomly chosen. In a first attempt the event is assigned to
the timeslot and rooms are reassigned for all the events in the timeslot by means of the
matching algorithm. If no feasible assignment of rooms can be found, the move is discarded,
otherwise it is accepted according to the SA criterion. If the move is not accepted all the
possible swaps with the events in the timeslot are tried. The matching algorithm is applied
at each attempt and only moves that lead to a feasible assignment are considered.

Initial Temperature For determining the initial temperature a sample in N1∪N2 of 100 neighbors
of the best assignment found so far is considered. The initial temperature is then determined
by the average value of the variation in the evaluation function multiplied by a given factor,
h (h > 0).

Temperature update We used a non monotonic temperature schedule realized by the interaction
of two strategies: a standard geometric cooling and a temperature re-heating. The stand-
ard geometric cooling computes the temperature, Tn+1 at step n + 1 by multiplying the
temperature in iteration n, Tn, with a constant factor α (cooling rate):

Tn+1 = α× Tn, 0 < α < 1

When the search seems stagnating, the temperature is re-heated by adding to the current
temperature the initial value. This is done when no improvement is found for a number of
steps given by reheat× TL where TL is the temperature length and reheat is a parameter
to tune. The assignment that we consider for testing improvements is the best since the last
reheating occurred.

Temperature length The number of iterations at each temperature is kept proportional to the size
of the neighborhood as suggested by the majority of Simulated Annealing implementations.
Hence, TL = q · e · r · t, where q is a parameter to tune.

For selecting the best combination of parameters α, reheat, q, h we used the race described in
Section 4. The outcome is the following: h = 0.15, α = 0.95, q = 10, reheat = 5.
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4 The race

The algorithm described above and the value of its parameters were selected among different can-
didates through a tuning procedure. Six different algorithms where considered: Ant Colony Op-
timization, MAX -MIN Ant System, Simulated Annealing, Tabu Search, Iterated Local Search
and Evolutionary Algorithms. For each, different values of the parameters where tested giving
raise to a total of 1185 candidates.

The procedure adopted for the selection is related to the F-RACE method [1]. In the racing
approach, the initial set of candidates is sequentially evaluated on the available instance. During
the race, poor candidates are discarded as soon as statistically sufficient evidence is gathered
against them. The elimination of inferior candidates speeds up the procedure and allows a more
thorough evaluation of the promising ones.

For the selection of the best configuration for the Timetabling Competition, a slightly modified
version of the racing approach was adopted for matching the rules and characteristics of the
competition. In the version we adopted, the elementary experimental unit is the run. A run
consists in testing all surviving candidates on the available instances. At the end of each run
a decision is made on which candidate should be discarded. Contrary to F-RACE, which is a
completely automatic procedure where decisions are solely based on the outcome of the Friedman
two-way analysis of variance by ranks, the method adopted in this work is of a more interactive
nature and various statistical tests were used here only for supporting a human decision maker.

The first phase of the race (2 runs) was conducted on the first 10 instances made available by
the organizers of the competition. When the second set of instances became available, the number
of surviving candidates had already dropped to one half of the initial one. From then on, each
run of the race consisted in running once each surviving candidate on each of the 20 available
instances.

The whole procedure took about one month of alternating phases of computation, analysis,
and human decision, and could rely on about 30 PC running Linux, with CPU speed in the range
between 300 and 1800 MHz.

5 Results submitted

In Table 1 per each instance we report the results submitted to the competition. Values represent
the best solution quality found on about 90 runs per instance.

Instance 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Solution 57 31 61 112 86 3 5 4 16 54 38 100 71 25 14 11 69 24 40 0

Table 1: The quality of the solutions submitted to the International Competition.

6 Conclusions

We presented a hybrid algorithm for solving the Course Timetabling Problem. This algorithm is
the outcome of a research in which several local search and metaheuristic approaches were tried,
among them Ant Colony Optimization, MAX -MIN Ant System, Simulated Annealing, Tabu
Search, Iterated Local Search, Iterated Greedy Search, and Evolutionary Algorithms. It has been
developed assembling together different elements which showed promising performance and the
experimental analysis confirmed that improvements can arise from hybridization. Nevertheless,
we believe that further endeavors, spent to understand the components that play a fundamental
role in the search, could reveal further improvements.
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the development of the algorithm. This work was supported by the “Metaheuristics Network”, a Research Training

Network funded by the Improving Human Potential programme of the CEC, grant HPRN-CT-1999-00106 and by

a European Community Marie Curie Fellowship, contract HPMF-CT-2001. The information provided is the sole

responsibility of the authors and does not reflect the Community’s opinion. The Community is not responsible for

any use that might be made of data appearing in this publication.

References

[1] M. Birattari, T. Stützle, L. Paquete, and K. Varrentrapp. A racing algorithm for configuring
metaheuristics. In W.B. Langdon et al., editor, Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2002). Morgan Kaufmann, 2002.

[2] O. Rossi-Doria. An hyperheuristic approach to course timetabling problem using an evolu-
tionary algorithm. submitted to MISTA The 1st Multidisciplinary International Conference
on Scheduling : Theory and Applications (MISTA 2003).

[3] O. Rossi-Doria, Ben Paechter, C. Blum, K. Socha, and M. Samples. A local search for the
timetabling problem. In Proceedings of PATAT 2002: The 4th international conference on the
Practice And Theory of Automated Timetabling, pages 115–119, Gent, Belgium, August 2002.

[4] O. Rossi-Doria, M. Samples, M. Birattari, M. Chiarandini, J. Knowles, M. Manfrin, M. Mas-
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