
Search Space Analysis of the Linear Ordering Problem
Tommaso Schiavinotto and Thomas Stützle

Darmstadt University of Technology, Intellectics Group,
Alexanderstr. 10, 64283 Darmstadt, Germany

{schiavin,tom}@intellektik.informatik.tu-darmstadt.de

Abstract. The Linear Ordering Problem (LOP) is an NP-hard combinatorial op-
timization problem that arises in a variety of applications and several algorithmic
approaches to its solution have been proposed. However, few details are known about
the search space characteristics of LOP instances. In this article we develop a detailed
study of the LOP search space. The results indicate that, in general, LOP instances
show high fitness-distance correlations and large autocorrelation length. However,
there exist significant differences between real-life and randomly generated LOP in-
stances. Based on these observations the the limited size of real-world instances, we
propose new, large real-life like LOP instances which appear to be much harder than
other randomly generated instances. Additionally, we propose a rather straightfor-
ward Iterated Local Search algorithm, which shows better performance than several
state-of-the-art heuristics.

1 Introduction

The Linear Ordering Problem (LOP) is an NP–hard problem that has a large number
of applications in such diverse fields as economy, sociology, graph theory, archaeology,
and task scheduling [6]. Given an n × n matrix C, the LOP is the problem of finding a
permutation π of the column and row indices {1, ..., n} such that the value

f(π) =

n
∑

i=1

n
∑

j=i+1

cπ(i)π(j)

is maximized. In other words, the goal is to find a permutation of the columns of matrix C
such that the sum of the elements in the upper triangle is maximized.

Both exact algorithms [6, 4, 14] and approximate algorithms have been proposed for
this problem. State-of-the-art exact algorithms can solve fairly large instances with up to
a few hundred columns; however, their computation time increases strongly with instance
size. Approximate algorithms include constructive algorithms like Becker’s greedy algo-
rithm [1], local search algorithms, the CK heuristic [3], as well as metaheuristics such as
Elite Tabu Search [10], Scatter Search [2], or iterated Dynasearch [5].

These algorithms have typically been tested on real-world as well as randomly gener-
ated instances. The LOLIB benchmark library comprises 49 real-world instances that are
input-output tables of economical flows in the EU. This is the most widely used set of in-
stances to test algorithms for the LOP, and it is available from [16]; for all LOLIB instances
optimal solutions are known [7]. Because LOLIB instances are rather small, Mitchell and
Borchers [14] generated larger instances in their research on exact algorithms for the LOP.
The idea underlying their way of generating instances is that there should be a large num-
ber of solutions with costs close to the optimal value to obtained hard instances. Thirty
of these instances with known optimal solutions are available from [13], where also the
generator can be found; we will refer to this instances as MBLB (Mitchell-Borchers LOP
Benchmarks). Other instances were based on random generators [10], however, the original
instances are not publically available and therefore not used in this paper.

One of the contributions of this paper is an analysis of the search space characteristics
of the available LOP instances including an autocorrelation analysis and a fitness-distance
analysis. The results indicate significant differences between the LOLIB and MBLB in-
stances, surprisingly suggesting that MBLB instances should be, when adjusting for the
difference in size, easier to solve for metaheuristics. We generated randomly large real-life
like instances and computational results confirm our conjecture. Additionally, our results of
the search space analysis suggest that Iterated Local Search (ILS) algorithms [11] are likely
to achieve high performance for the LOP. In fact, a rather straightforward ILS algorithm
using the CK local search heuristic appears to be competitive or superior to all previously
proposed metaheuristic approaches.

The paper is structured as follows. In the next section we analyze the behavior of dif-
ferent local search algorithms on the two instance classes. Sections 3 and 4 give statistical
measures on the instance structure and the results of the landscape analysis. Finally, we
give details on the performance of two Iterated Local Search implementations based on
two different local searches and give some concluding remarks in Section 6.

2 Local Search

The currently best known constructive algorithm, due to Becker [1] orders the columns
(and the rows) based on a heuristic value

qj =

∑m

k=1 cjk
∑m

k=1 ckj

.

The higher qj the sooner the column with index j must be in the permutation. This algo-
rithm runs in O(n3) is fast and it gives good solutions that can be used as starting point
for local search algorithms. The average deviation from the optimum solutions for LOLIB
instances with Becker’s heuristic is 9.46% (compared to an average of 30.48% for ran-
dom permutations) and 2.38% on MBLB instances (random permutations average 40.34%
above optimum).

Better solutions are obtained using local search algorithms. We run some initial exper-
iments with a number of iterative improvement algorithms. We considered two different
neighbourhoods, which are defined by the operations applicable to a current solution. The
first is the insert operation: an element in position i is inserted in another position j. For-
mally, Insert : Π × {1, . . . , n}2 → Π , is defined for i 6= j:

Insert(π, i, j)
∆
=

{

(. . . , πi−1, πi+1, . . . , πj , πi, πj+1, . . .) i > j;
(. . . , πj−1, πi, πj , . . . πi−1, πi+1, . . .) i < j;

We denote this neighbourhood by NI ; its size is |NI | = n2 − 2n.
Another possible neighbourhood is NX , defined by the operation interchange, where

to elements are exchanged. Interchange : Π × {1, . . . , n}2 → Π , for i 6= j:
Interchange(π, i, j)

∆
= (. . . , πi−1, πj , πi+1, . . . , πj−1, πi, πj+1, . . .)

The size of this neighbourhood is |NX | = n(n−1)
2 . We implemented both, a best- and

first-improvement version of local search based on the NI and the NX neighbourhoods. In
addition we also used a variable neighbourhood descent (VND) style heuristic: if a local
minimum with respect to the first neighbourhood is met, the search is continued exploiting
the second neighbourhood.

In addiction to these standard neighbourhoods, we also implemented a LS algorithm CK
due to Chanas and Kobylański [3] that uses two functions sort and reverse. When applied

Table 1. Comparison of first-improvement algorithms based on different neighbourhoods on MBLB
and LOLIB instances (B.I. indicates that a best-improvement local search was applied). The results
are averaged over 100 runs on each of the 30 instances, the number of optima indicates on how many
instances was found a global optimum at least once in the 100 runs, and the time given is the total time
spent to run the local search on all 30 instances once. If two neighborhoods are indicated (separated
by +), VND is used; in this case we give the percentage of how often and for how many instances
the local search in the second neighbourhood was able to improve the first one.

Local Search Avg. # Opt. time (s) # Inst. % Improved
Dev. (%) Improved Runs

NI 0.0195 10 10.04 – –
NI (B.I.) 0.0219 11 187.72 – –
NX 0.3870 0 9.35 – –
CK 0.0209 12 0.22 – –MBLB NX + NI 0.0182 11 23.33 30 100.00
NI + NX 0.0191 14 11.44 0 0
NI + CK 0.0169 10 9.94 26 26.30
CK + NI 0.0197 14 0.90 3 0.40
NI 0.1842 42 0.1802 – –
CK 0.2403 38 0.0205 – –LOLIB NI +CK 0.1819 44 0.1881 33 8.37
CK +NI 0.2360 40 0.0420 2 0.08

to a permutation, sort returns a new one in which the elements are rearranged according
to a sorting criteria similar to the one used in Becker’s algorithm, while reverse returns
simply the reversed permutation. In the LOP case, if a permutation maximizes the objective
function, the reversed permutation minimizes the objective function; hence, reversing a
good solution leads to a bad solution. The idea of CK is to alternate sorting and reversing
to improve the current solution; in fact, it has been shown that the application of reverse
and then sort to a solution will lead to a solution with a value greater or equal the starting
one. The functional description of the algorithm is:

(sort∗ ◦ reverse)∗ ◦ sort∗

where the ◦ is the function composition, and the ∗ operator is used to apply any given
function iteratively until the objective function does not change. Formally we consider a
general function φ, and a generic permutation π:

φ∗(π)
∆
=

{

π f(φ(π)) = f(π)
φ∗(φ(π)) otherwise

Unfortunately the CK local search induces an ill-defined neighbourhood that cannot be
used for all the types of search space analysis conducted in the next section.

Table 1 shows the results obtained by applying the various LS algorithms to random
initial solutions. It can be noticed that CK is by more than an order of magnitude faster
than the other single neighbourhood local searches and it obtains a solution quality com-
parable to the other local searches. The best solution quality among plain local searches is
obtained with the NI neighbourhood, while local search in the NX neighbourhood returns
poor quality solutions using comparable computation times to insert. The VND algorithms
shows that only by concatenating the NI with CK yields significant improvements over
the plain local search, while it is not the case vice versa. In general, these preliminary ex-
periments suggest that good results can be obtained using a single local search and that
the improvement through VND is not important (besides the case of interchange+insert).
Hence using a plain local search allows a simpler design of a metaheuristic and a shorter
computation time. In the rest of this work we will focus on insert and CK, because they
showed to be the best performing in terms of quality.

Table 2. LOLIB (left) and MBLB (right) structural information: some statistical information is given
about the structure of the instances, the 1st and 3rd Qu. indicate the first and the third quantile respec-
tively.

Size Min 1st Qu. Median 3rd Qu. Max Mean
Sparsity 0.00 21.53 41.27 55.06 80.63 39.36

44 VC 4.21 4.59 5.13 5.53 10.34 5.49
Skewness 9.78 11.51 13.01 15.31 25.70 14.28
Sparsity 33.65 35.65 43.16 52.08 58.30 44.57

50 VC 5.54 5.72 6.96 10.14 16.17 8.91
Skewness 13.13 15.16 21.09 29.55 39.21 23.63
Sparsity 25.51 25.95 26.91 27.18 28.06 26.67

56 VC 4.24 4.38 4.45 5.01 6.45 4.85
Skewness 10.84 11.48 12.24 16.81 30.52 15.67
Sparsity 28.69 28.78 28.86 29.42 29.97 29.17

60 VC 5.85 5.98 6.11 6.12 6.14 6.03
Skewness 23.84 23.96 24.09 24.47 24.85 24.26

Variation Coefficient
Sparsity

Size 0% 10% 20%
100 - - 1.00-1.02
150 0.77-0.78 0.88-0.89 -
200 0.77-0.78 0.88 -
250 0.77-0.78 - -

Skewness
Sparsity

Size 0% 10% 20%
100 - - 0.98-1.00
150 0.82-0.85 0.87-0.88 -
200 0.82-0.85 0.88-0.89 -
250 0.82-0.84 - -

3 Structural analysis of the instances

The first level of our analysis of LOP instances is based exclusively on a high level descrip-
tion of the instances and on the input data, that is, the distribution of the matrix entries.

LOLIB comprises 49 real world instances, of which 39 are of size n = 44, 5 of size n =
50, 11 of size n = 56, and 3 of size n = 60. MBLB instances are randomly generated, with
the matrix entries generated according to a uniform distribution, and then certain number
of zeros are added. MBLB comprises 30 instances: 5 instances of size 100, 10 of size 150,
10 of size 200 and 5 of size 250.

For all instances we computed the sparsity, the variation coefficient, and the skewness
of the matrix entries. The sparsity measures the percentage of elements that are equal to
zero; it seemed to have a strong influence on algorithm behavior in [14]. The sparsity of the
real world examples varies very strongly from 0% to 80%, while MBLB instances where
generated with fixed sparsity of 0%, 10%, and 20%. Two further measures, which depend
to some extent on the sparsity, were computed. The variation coefficient (VC) is defined as
σ
X̄

, where σ is the standard deviation and X̄ is the mean of the matrix entries: it gives an
estimate of the variability independent of the size and the range of the matrix entries. The
skewness is the third moment of the mean normalized by the standard deviation, it indicates
the degree of asymmetry of the matrix entries.

Table 2 gives some information about these measures for LOLIB and MBLB instances.
We present the results for the two instance classes in two different ways, because of the
low variance of these values on the MBLB instances and because these instances can easily
be grouped on sparsity. As we see, the latter measure determines the skewness and the
VC for MBLB instances. This analysis already shows that LOLIB and MBLB instances
are very different. While MBLB instances are rather similar (see the low variation in our
measures) and generally have low VC and skewness, the real-world instances show much
larger differences in all three statistics and the VC and skewness are typically much larger.

4 Landscape analysis

Landscape analysis is an instrument used in order to study not trivial features of combi-
natorial problems, which can be traced back to [21]. The idea is to “visualize” the search
space as a landscape formed by all the solutions (in our case permutations) and a fitness
value for each solution corresponding in our case to the objective function f .

Table 3. Given is the value `

n
, that is the correlation length normalized by instance size for LOLIB

and MBLB instances.
Size Min 1st Qu. Median 3rd Qu. Max Mean
44 0.7536 0.7854 0.7929 0.8031 0.8237 0.7937
50 0.7642 0.7695 0.7861 0.8043 0.8145 0.7877

LOLIB 56 0.8004 0.8120 0.8241 0.8311 0.8371 0.8208
60 0.8383 0.8389 0.8395 0.8399 0.8403 0.8394

100 0.9339 0.9350 0.9357 0.9360 0.9371 0.9355
MBLB 150 0.9594 0.9595 0.9610 0.9623 0.9645 0.9612

200 0.9626 0.9690 0.9696 0.9710 0.9744 0.9698
250 0.9703 0.9742 0.9748 0.9769 0.9775 0.9747

Formally, a landscape for the LOP is described by a triple 〈Π(n), f, d〉, where Π is
the set of all permutations of the integers {1, . . . , n}, f is the cost function and d is a
distance measure, which induces a structure on the landscape. If we think of a local search
as the operation to find a local optimum, it is natural to define distance according to the
type of neighborhood we use. In this work we focus on the insert and CK neighborhoods.
For each neighborhood, the distance is defined as the minimum number of applications
of the basic local search operation to transform a permutation into another. While for the
CK algorithm it is not clear which is this basic operation is, in the case of the insert local
search it is clearly the insert operation. Unfortunately, as far as we know, it seems that
there is no efficient way to compute the number of minimum insert applications, in order
to transform a permutation into another one. Therefore, we use a surrogate distance that
evaluates the distance between two permutation considering the position of the elements
in both, originally proposed in [15]. We call this distance precedence metric: for each the
element j it is counted the number of times this is preceded by another element i in both
permutations. The final ‘distance’ is obtained subtracting this quantity from n(n − 1)/2.
Hence, the maximum distance between two sequences n(n − 1)/2, this value corresponds
also to the diameter of the landscape.

One of the features of a fitness landscape often investigated is the ruggedness: a fitness
landscape is said to be rugged if there is a low correlation between neighbouring points. In
order to calculate this correlation [18, 17, 20] suggest to use the autocorrelation on a time
series of “adjacent” solutions that are generated by a random walk:

r(s) =
1

σ2(f)(m − s)

m−s
∑

t=1

(f(xt) − f̄)(f(xt+s) − f̄).

This measure is defined on a time series {f(xt)} and defines the correlation of two solutions
s steps away along a random walk of length m through the fitness landscape (σ2(f) is the
variance of the time series, and f̄ the mean). Another measure, based on r(s), simpler to
interpret, is the landscape correlation length ` = − 1

ln(|r(1)|) (r(1) 6= 0): the lower is the
value for `, the more rugged is the landscape. We computed ` on the LOLIB and MBLB
instances based on the NI neighbourhood, because the CK, as said before, can not be used
for this type of analysis. Table 3 summarizes data collected all over the instances grouped
by size. The correlation length is always smaller for LOLIB instances than for MBLB
instances, which, abstracting from the instance size, indicates that the LOLIB problems are
harder for insert than the MBLB ones.

The next step in the our analysis was to generate a large number of local optima for all
the instances (13,000 for LOLIB and 1,000 for MBLB instances). Based on these, we first

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

1 10 100 1000

∆f

Distance

stabu1

0

0.001

0.002

0.003

0.004

0.005

0.006

1 10 100

∆f

Distance

t65f11xx

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

1 10 100 1000 10000

∆f

Distance

r150b0

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

1 10 100 1000 10000
∆f

Distance

r200b1

Fig. 1. Plots of the deviation from the optimal value versus the minimum distance of local optima
(generated with insert LS) from a global optimum, the maximum distance is shown. From LOLIB:
stabu1 ρ = 0.8757; t65f11xx ρ = −0.1056 (lowest). From MBLB (log scale on distance):
r150b0 ρ = 0.9395 (highest); r200b1 ρ = 0.6144 (lowest).

analyzed the number of global optima that were found among the local optima. Among the
local optima generated by the insert LS, we find on average 0.46% distinct global optima
over the distinct l.o. for MBLB (min. 0%, max. 4.27%) and 14.10% for LOLIB (min 0.47%,
max 85.12%); this indicates that most of the instances can actually be solved by a random
restart algorithm that is run long enough. Furthermore, as Table 1 shows, local optima for
MBLB instances have a smaller deviation from the optimal value than for LOLIB instances.

Another standard technique in analyzing the landscape is the study of the fitness-
distance correlation (ρ) between the quality of the local optima and the distance from the
closest global optima [8]. Here we focus on the relationship between the distance to the
closest globally optimal solution and the deviation from the global optimum as the fitness
function. In this case, a strongly positive ρ coefficient, −1 ≤ ρ ≤ 1, indicates that the solu-
tion quality gives good guidance when searching for global optima (the interpretation then
is that the smaller the deviation, that is, the better the solution, the closer we get to global
optima, on average). Tab. 4 summarizes the information about fitness/distance correlation,
Fig. 1 gives some example plots of the fitness-distance relationship.

All MBLB instances and most LOLIB instances show a very high value for ρ, suggest-
ing that these instances should be relatively easy for restart type algorithms [12]. However,
some of the LOLIB instances show even negative fitness-distance correlation; therefore,
these instances may pose some problems to metaheuristics despite their small size. In gen-
eral, the variability of ρ is much higher for LOLIB instances, suggesting that these show a
variety of different structures, different from MBLB instances, which are more similar to
each other. Additionally, ρ is typically smaller for LOLIB instances than MBLB instances,
suggesting that they should be somewhat harder than MBLB instances. Finally, we run a

Table 4. Statistical information about fitness/distance correlation (ρ) on local optima returned by CK
(left table) and insert (right table) for both classes of instances grouped by size.

Size Min 1st Qu. Median 3rd Qu. Max Mean
44 -0.07 0.48 0.67 0.83 1.00 0.59
50 0.17 0.26 0.49 0.74 0.92 0.52LOLIB 56 0.34 0.67 0.72 0.85 0.92 0.73
60 0.67 0.73 0.79 0.84 0.88 0.78

100 0.68 0.75 0.75 0.77 0.83 0.76
MBLB 150 0.72 0.84 0.84 0.87 0.90 0.84

200 0.53 0.66 0.75 0.77 0.91 0.73
250 0.79 0.79 0.85 0.86 0.87 0.83

Size Min 1st Qu. Median 3rd Qu. Max Mean
44 -0.11 0.42 0.64 0.76 1.00 0.58
50 -0.01 0.40 0.61 0.75 0.89 0.53LOLIB 56 0.34 0.65 0.70 0.85 0.94 0.72
60 0.70 0.71 0.73 0.80 0.88 0.77

100 0.71 0.71 0.73 0.81 0.84 0.76
MBLB 150 0.70 0.79 0.84 0.86 0.94 0.82

200 0.61 0.71 0.73 0.78 0.91 0.75
250 0.79 0.80 0.82 0.84 0.86 0.82

Table 5. Summary of the maximum time for finding the optima over 100 runs (the optima has been
found in every run) of ILSCK.

Size Min 1st Qu. Median 3rd Qu. Max Mean
44 0.00 0.00 0.01 0.03 0.16 0.03
50 0.03 0.03 0.09 0.50 1.57 0.44LOLIB 56 0.01 0.02 0.03 0.07 0.15 0.05
60 0.09 0.13 0.16 0.25 0.34 0.20
100 0.14 0.20 0.54 0.70 2.41 0.80

MBLB 150 0.16 0.21 0.34 0.76 1.81 0.59
200 0.27 0.94 1.69 4.00 14.27 3.30
250 0.55 1.44 2.53 3.23 6.25 2.80

Size Min 1st Qu. Median 3rd Qu. Max Mean
44 0.02 0.07 0.15 1.19 45.19 3.73
50 0.16 0.48 6.56 253.90 977.96 247.80LOLIB 56 0.160 0.39 0.88 4.66 22.71 4.96
60 1.40 1.85 2.30 8.12 13.93 5.88

100 1.29 1.39 12.37 13.81 34.39 12.65
MBLB 150 2.66 3.17 6.94 12.99 27.13 9.27

200 9.94 21.42 41.60 101.70 158.30 62.51
250 27.60 49.66 52.21 118.70 133.00 76.23

paired t-test for each class to compare the ρ values obtained by the CK and insert LS on
each instance; the result was that they are not significantly different both for LOLIB and
for MBLB.

5 Iterated Local Search

Here we consider the application of ILS to the LOP. One main motivation for doing this is
the high fitness-distance correlation observed for a large number of LOP instances, which
suggests that ILS can successfully solve the LOP. ILS is a metaheuristic that despite its
simplicity achieved excellent results on several NP-hard problems [11]. ILS iterates in a
particular way over the local search process. This is done based on three main steps: (i)
perturb a locally optimal solution, then (ii) locally optimize it with the local search chosen
and finally (iii) choose, based on some acceptance criterion, the solution that undergoes the
next perturbation phase. In both the implementations we present here, the perturbation is
made on NX . Actually, the only difference between the two implementations is that one
is based on CK LS (ILSCK) and the other on the insert LS (ILSI). For both, the parameter
tuning has been done on the MBLB instances, for ILSCK the same settings were good also
for LOLIB instances, while the ILSI exhibits some lack of tuning on the latter class of
instances, due to the bias cause by MBLB instances.

We run both algorithms 100 times on all LOLIB and MBLB instances on an AMD
Athlon 1.2Ghz machine with 1GB RAM. Table 5 summarizes the maximum time needed to
find the known global optima for both instance classes and both ILS algorithms. The results
suggest that ILSCK yields much better performance than ILSI over the whole benchmark
set. For example, ILSCK was able to find always a global optimum for LOLIB instances in
less than 0.34s, except for instance be75np where the maximum time for finding a global
optimum was of 1.57s. On the MBLB instances ILSCK takes 14.27s for the r200e1, and
less than the half for all the others. ILSI requires much larger computation times. For
example, the maximum computation times over 100 runs range between 1.29s and 158.33s
for the MBLB, and between 0.02s and 45.19s for LOLIB, with a peak of 978s for instance
be75np (such a behavior can be in part due to parameter under-tuning).

0.01

0.1

1

10

0.01 0.1 1 10

tim
e

(s
) I

LS
I

time (s) ILSCK

LOLIB
MBLB

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

tim
e

(s
) S

im
pl

ex

time (s) ILSCK

LOLIB
MBLB

Fig. 2. Pairwise comparison of ILSCK with ILSI (the median of the 100 runs is shown) and the
Simplex algorithm.

0

0.2

0.4

0.6

0.8

1

0.1 1 10 100 1000 10000

P
ro

b.
 to

 fi
nd

 a
n

op
tim

um

time (s)

r250e0

ILSI
ILSCK 0

0.2

0.4

0.6

0.8

1

1 10 100 1000

P
ro

b.
 to

 fi
nd

 a
n

op
tim

um

number of iterations

r250e0

ILSI
ILSCK

Fig. 3. RTD plots on a MBLB instance: over time (left); over number of iterations (right).

In addition, we run a simplex algorithm by Mitchell and Borchers [14] to compare
ILS to exact algorithms. Figure 2 gives a pairwise comparison between ILSCK and ILSI

(left side) and the Simplex and ILSCK; each point gives the timings of the two different
algorithm for the same instance. It must be considered that the comparison with the simplex
is somehow inaccurate: this is an exact algorithm, while the ILS does not assure that the
optima will be found. In any case, ILSCK is clearly faster than Simplex, often by several
orders of magnitude, and also beats ILSI on an instance by instance basis.

Runtime distribution (RTD) plots depict the probability of finding a global optima in
dependence of computation time. This kind of plots (e.g. Figure 3(a)) point towards an
interesting property of the two implementations on MBLB instances: the curves show a
similar shape. This suggested to do the same plots but over the number of iterations instead
of computation time for the two ILS (Figure 3(b)). As can be observed, by considering
only the number of iterations the two algorithms are very similar, and sometimes ILSI even
needs less iterations than ILSCK. In the case shown in Figure 3 ILSI needs a maximum of
132.99s against 6.25s of ILSCK, but only a maximum of 416 iterations, while ILSCK needs
552. This indicates that, at least on MBLB instances, the two local searches mainly differ
on the speed, and they have not an intrinsically different behavior.

We also compared ILSCK to published results for existing LOP algorithms (Table 6).
The algorithms include a scatter search [2] (SS), elite tabu-search (ETS) [10] and ILS with
Dynasearch local search [5]. These algorithms were evaluated on LOLIB instances, in-
stances randomly extracted form the Stanford Graphbase [9], and some additional random
instances. Here we focus on LOLIB instances, since we did not have available the other
instances. SS and ETS were run on a Pentium 166Mhz and Iterated Dynasearch and a Sun-
Sparc 5/110. We estimated (using some indirect comparison between cpu95 and cpu2000
benchmarks found in [19]) that our machine is roughly 15 times faster than the Pentium

Table 6. Comparison of our algorithms with state-of-the-art algorithms, timings for ETS, SS and
Dynasearch correspond to the time measured on a Pentium 166Mhz (which is roughly 15 times
slower than our machine).

ILSCK ILSI ETS[10] SS[2] Dynasearch [5]
Std. Dev.(%) 0.00 0.00 0.00 0.01 0.00

Optima 49 49 47 43 49
Avg. Time 0.08 24.06 0.93 3.82 1.22(0.30)

166Mhz. In Table 6 we use the original timings given in the papers. There is clearly a
ceiling effect due to the small size of the instances, further experiment on some larger and
harder instances could give a better idea of the quality of the algorithms, by the way it
seems that our ILS is definitely competitive or may prove to be slightly superior to these
best known algorithms for the LOP.

Since the several measures we considered seemed to suggest that LOLIB instances are
harder than the MBLB ones we generated new instances of size 250 (as the largest ones
in MBLB), bootstrapping the elements from the instances of LOLIB (for each instance a
corresponding instance of size 250 has been generated), so that the statistical features were
the same. First of all, we calculated the landscape correlation length, and we got that it
ranges between 69% and 75% of the size, so a lower value than the original instances.
We chose an instance (be75np) that resulted to be hard in the original problems. The
simplex was not finished after 19000 (about 13 days and 4 hours) minutes, on the MBLB
instances the maximum time was 2987.89 seconds. While the ILSCK was not able to find
any optimum over 100 runs of 40 minutes, when on MBLB instances it always found a
global optima in all 100 runs in less than 15 seconds.1

6 Conclusions

We can draw several conclusions from this paper. First, LOLIB and MBLB instances are
significantly different, showing different high-level characteristics of the matrix entries like
sparsity and skewness. Second, these differences also show up in the results of a search
space analysis, in which we found that MBLB instances typically have higher correlation
length and also a generally larger fitness-distance correlation than LOLIB instances. This
suggests that MBLB instances, should be easier to solve than LOLIB instances, when ab-
stracting from instance size. Third, we developed a new state-of-the-art ILS algorithm,
which is able to find global optima solutions to all benchmark instances in short compu-
tation time. Finally, we generated new, large real-life like instances, which appear to be
significantly harder to solve than MBLB instances of the same size.

In future work we will extend the search space analysis to a larger number of of in-
stances, including all the different types of instances proposed so far in the literature and
examine more closely the relationship of sparsity to instance hardness. A second line of
research is to examine also the performance of other metaheuristics on the LOP. However,
preliminary results indicate that it will be very difficult to reach the performance of ILSCK.

Acknowledgments
The authors would wish to thank Prof. John Mitchell and Dr. Brian Borchers for making available the
code of the simplex. This work was supported by the “Metaheuristics Network”, a Research Training

1 These instances will be made available at the address http://www.intellektik.
informatik.tu-darmstadt.de/˜schiavin/lop.

Network funded by the Improving Human Potential programme of the CEC, grant HPRN-CT-1999-
00106. The information provided is the sole responsibility of the authors and does not reflect the
Community’s opinion. The Community is not responsible for any use that might be made of data
appearing in this publication.
References
1. O. Becker. Das Helmstädtersche Reihenfolgeproblem – die Effizienz verschiedener

Näherungsverfahren. In Computer uses in the Social Science, Wien, January 1967.
2. V. Campos, M. Laguna, and R. Martı́. Scatter search for the linear ordering problem. In D. Corne

et al., editor, New Ideas in Optimization, pages 331–339. McGraw-Hill, 1999.
3. S. Chanas and P. Kobylanski. A new heuristic algorithm solving the linear ordering problem.

Computational Optimization and Applications, 6:191–205, 1996.
4. T. Christof and G. Reinelt. Low-dimensional linear ordering polytopes. Technical report, Uni-

versity of Heidelberg, Germany, 1997.
5. R. K. Congram. Polynomially Searchable Exponential Neighbourhoods for Sequencing Prob-

lems in Combinatorial Optimisation. PhD thesis, University of Southampton, Faculty of Mathe-
matical Studies, UK, 2000.

6. M. Grötschel, M. Jünger, and G. Reinelt. A cutting plane algorithm for the linear ordering
problem. Operations Research, 32(6):1195–1220, November-December 1984.

7. M. Grötschel, M. Jünger, and G. Reinelt. Optimal triangulation of large real world input–output
matrices. Statistische Hefte, 25:261–295, 1984.

8. T. Jones and S. Forrest. Fitness distance correlation as a measure of problem difficulty for ge-
netic algorithms. In L.J. Eshelman, editor, Proc. of the 6th International Conference on Genetic
Algorithms, pages 184–192. Morgan Kaufman, San Francisco, 1995.

9. D. E. Knuth. The Stanford GraphBase: A Platform for Combinatorial Computing. Addison
Wesley, New York, 1993.

10. M. Laguna, R. Martı́, and V. Campos. Intensification and diversification with elite tabu search
solutions for the linear ordering problem. Computers and Operation Research, 26:1217–1230,
1999.

11. H. R. Lourenço, O. Martin, and T. Stützle. Iterated local search. Technical Report AIDA–00–06,
FG Intellektik, FB Informatik, TU Darmstadt, November 2000. To appear in F. Glover and G.
Kochenberger, editors, Handbook of Metaheuristics, Kluwer, 2002.

12. P. Merz and B. Freisleben. Fitness landscapes and memetic algorithm design. In D. Corne,
M. Dorigo, and F. Glover, editors, New Ideas in Optimization, pages 245–260. McGraw-Hill,
London, 1999.

13. J. E. Mitchell. Generating linear ordering problems. http://www.rpi.edu/˜mitchj/
generators/linord, November 2002.

14. J. E. Mitchell and B. Borchers. Solving linear ordering problems with a combined interior
point/simplex cutting plane algorithm. In H. L. Frenk et al., editor, High Performance Optimiza-
tion, pages 349–366. Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000.

15. C. R. Reeves. Landscapes, operators and heuristic search. Annals of Operational Research,
86:473–490, 1999.

16. G. Reinelt. Library for linear ordering problem. http://www.iwr.uni-heidelberg.
de/iwr/comopt/soft/LOLIB/, November 2002.

17. P. Stadler. Towards a theory of landscapes. In R. Lopéz-Peña, R. Capovilla, R. Garcı́a-Pelayo,
H. Waelbroeck, and F. Zertuche, editors, Complex Systems and Binary Networks, volume 461,
pages 77–163, Berlin, New York, 1995. Springer Verlag.

18. P. Stadler. Landscapes and their correlation functions. J. of Math. Chemistry, 20:1–45, 1996.
19. Standard Performance Evaluation Corporation. SPEC CPU95 and CPU2000 Benchmarks.

http://www.spec.org/, November 2002.
20. E. D. Weinberger. Correlated and uncorrelated fitness landscapes and how to tell the difference.

Biological Cybernetics, 63:325–336, 1990.
21. S. Wright. The roles of mutation, inbreeding, crossbreeding and selection in evolution. In Proc.

of the Sixth Congress on Genetics, page 365, 1932.

