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Abstract. We present here some ideas for a new constructive approach
to the university course timetabling problem. The main motivation of
this work is the observation that in timetabling it is the relative position
of events that plays a major role in determining the quality of a solution,
not the particular timeslot they are in. Therefore, when inserting a new
event into the timetable, we want to take into account the “opinions”
of other events on where it should be placed with respect to their own
position, e.g. in the same timeslot, in a different day, or in an adjacent
timeslot. The opinions here play a role similar to that of the pheromone
in ant algorithms. A feasible timeslot for the event is chosen according
to a probability based on this information and some additional heuristic
information.
Some preliminary tests suggested that it is better to use the opinions
information in the constructive decision process only some of the time
with a certain diversity rate, while copying the best timetable so far in
the other cases. Moreover at the moment it seems best to concentrate
just on whether events want to be in the same timeslot, leaving ‘adja-
cent timeslots’ and ‘same day’ information out. We present promising
initial results on the International Timetabling Competition benchmark
instances.

1 Introduction

University course timetabling is the problem of producing a weekly timetable
for the lectures of a university. A general problem consists in assigning a set
of events (lectures, tutorials, etc.) into a limited number of timeslots, so that a
set of constraints are satisfied. Constraints are usually classified as hard or soft.
Hard constraints are constraints that must not be violated under any circum-
stances, while soft constraints should preferably be satisfied, but can be accepted
with a penalty if necessary. Different versions of the problem can arise at differ-
ent universities, depending on different requirements which are translated into
constraints.

The general course timetabling problem is NP-hard. A considerable amount
of research has dealt with the problem and comprehensive reviews can be found
in [2, 8].



The version of the problem we focus on here is a reduction of a typical uni-
versity timetabling problem, which was proposed by the Metaheuristics Network
for the International Timetabling Competition [4]. The problem is described in
Section 2.

In this paper we propose a new general approach to the university course
timetabling problem. This is based on the observation that in timetabling what
is important is not for any event to be in a specific timeslot and room, but
it is the relative position of events with respect to each other that ultimately
determines the quality of a solution in terms of hard and soft constraints. This
is also true in particular for the variant of the problem we tackle here.

We therefore propose a constructive approach to the problem that takes into
account the “opinions” of other events when a new event has to be placed into
the timetable. This information plays a role similar to the one of the pheromone
in ant algorithms, as explained in Section 3.1.

Since preliminary experiments suggest that the probabilistic element of the
algorithm based on the opinions information leaves too much change in the
constructive process, we tried to restrict its use only to a certain percentage of
the decisions on where events have to be inserted. In the other cases the event
will just be placed where it was in the best solution found so far, if the position is
still available, otherwise the algorithm will resort again to the opinions system.
We also noted that the algorithm works much better when it uses just one of
the opinion lists at a time, in particular the opinion on whether events want to
be in the same timeslot as other events gives the most promising results. As a
result the algorithm seems to be promising. We describe it in more details in
Section 3.

A very effective local search [3, 9] is used to further improve the solution
timetables obtained by the algorithm at each iteration and it is described in
Section 4.

Promising results on the International Timetabling Competition benchmark
instances are presented and discussed in Section 5. Finally conclusions are drawn
in Section 6.

2 Problem description

The problem consists of producing a weekly timetable for a university. Events,
or lectures, have to be scheduled in 45 timeslots (5 days of 9 hours each) and
a number of rooms, with varying facilities and student capacities, so that the
following hard constraints are satisfied:

– H1: lectures having students in common cannot take place at the same time;
– H2: lectures must take place in a room suitable for them in terms of facilities

and student capacity;
– H3: and no two lectures can take place at the same time in the same room.

We consider as well the following soft constraints:

– S1: students should not attend more than two lectures in a row;



– S2: they should not have to attend lectures in the last timeslot of the day;
– S3: and they should not have only one lecture in any given day.

Note that the given soft constraints are representative of three different types
of constraints: constraint S2 can be checked without knowledge of the rest of
the timetable; S1 can be checked while building a timetable; and S3 can only
be checked when the timetable is complete and all lectures have been assigned
a timeslot.

A timetable in which all lectures have been assigned a timeslot and a room so
that no hard constraint is violated is said to be feasible. The aim of the problem
is to find a feasible solution with minimal soft constraint violations.

3 Algorithm description

The main idea of the algorithm is to take into account the “opinions” events
might have on each other’s relative positions. This information, together with
some additional heuristic information, is used in a constructive process that at
each step chooses probabilistically where to place any new event, in a way very
similar to Ant Colony Optimization (ACO) [5].

The events are inserted into the timetable in a fixed order, determined ac-
cording to a heuristic which considers how many other events clash with them,
where an event is said to clash with another one if it shares at least one student
with it. We also take into account which events have to go in just one particular
room as suggested in Socha [9]. The resulting order is indicated with the simbol
≺, where ei ≺ ej if according to it event ei comes before event ej .

3.1 The opinion lists

When an event is being considered for insertion into the timetable we want other
events to give their opinions on where that event might be placed. Each of the
other events can have an opinion, for example, on how much they want it be
in the same or a different timeslot; how much they want it be on the same or
a different day; or how much they want it to be in an adjacent or non-adjacent
timeslot.

This global information is kept in 6 lists of events, one for each type of opinion
for each event. To each event in the list of a given event there is an associated
value. The higher the value the greater is the weight of that event’s opinion on
where the given event has to be placed. These lists play a role similar to that of
the pheromone in ACO, in that they help making a probabilistic choice during
the constructive process, and in the fact that they are updated at each iteration
with global and local information on the built solutions. The difference with
respect to ACO is that there can be more than one pheromone information,
one for each type of opinion, and for this reason, as the pheromone information
becomes larger, it is worthwhile to have partial graphs, not complete ones with
edges between each pair of events. This feature also expresses the fact that an



event might not have something to say about all of the other events, but only few
relationships might be critical, and it is the task of the algorithm to make them
emerge, as the opinion lists of events for each event are updated. We considered
lists of length 6, i.e. each event will take into account the opinion of 6 other
events for each opinion type.

The opinion lists are initialised by a heuristic and/or the information coming
from an initial solution built randomly and improved by means of local search.
In the case of the ‘same timeslot’ list we place in the list for a given event 6
events sharing the timeslot with it in the initial solution, giving precedence to
the events that have the greater number of clashing events in common with it.
If there are not enough events in the timeslot to fill the list, then the remaining
events are chosen according to this latter heuristic. The opinion values for all
the events are initialised to the maximum value allowed, that we chose to be 1.

3.2 The voting mechanism

At each constructive step the events in the lists of the event under consideration
vote, according to their opinion value, on how much they want it to go into a
particular timeslot. Feasible timeslots only are considered for each event, that
is timeslots in which the event will not cause hard constraint violations. If no
feasible timeslot is available the number of timeslots limit is temporarily relaxed
to more than 45, and the local search will then take care of reducing this number
back to 45 or less.

Suppose an event in the ‘same timeslot’ list of the event under consideration
is assigned to a certain timeslot, then only that timeslot, if feasible, gets the
corresponding vote. On the other hand an event in the ‘different day’ list gives
its vote to all feasible timeslots that are not in the day it is in. If an event in
an opinion list has not yet been placed then its vote is split between various
timeslots according to where the event has been in previous iterations. The idea
is that that event might have a higher probability of going into a timeslot where
it has been it the past.

The votes from different events and opinions add up, and timeslots are chosen
probabilistically according to the share of the votes they get. If more than one
suitable room is available for the event in the chosen timeslot, then the room
is chosen probabilistically. The probability of a room been chosen is inversely
proportional to the number of events the room is suitable for.

An effective local search described in Section 4 is used to improve the quality
of the built solutions.

3.3 Lists management

The opinion lists are then updated, after each iteration of the algorithm, based
on global and local information on the quality of the resulting timetables.

The ‘same timeslot’ lists for example are updated by rewarding the events
on the list of a given event which are actually in the same timeslot as that event



in the best solution found so far. The reward is proportional to the number of
rooms filled in that particular timeslot for the best found timetable.

When the value of an event in a list becomes lower than a certain threshold,
or minimum value, the event is deleted from the list and replaced by other
promising events that might have something to say on the event owner of the
list. That is events that are now in its same timeslot in the best solution found
so far, with ties broken according to the greater number of clashing events in
common. On the other hand the opinion values are always kept to be not greater
than a certain maximum value.

Before any feedback is added the opinion values are “evaporated”, as the
pheromone in ant algorithms, to mantain a good exploration rate. After pre-
liminary trials the evaporation rate of the opinion lists values was set to 0.1,
in combination with a minimum opinion value allowed of 0.5, and a maximum
possible opinion value of 1.

3.4 Some preliminary observations

Preliminary experiments showed that using the complete system with all 6 dif-
ferent opinion lists, the votes on different timeslots might be averaged out to be
the same value. Moreover the probabilistic element of the constructive algorithm
leaves too much freedom on where events will be placed, especially at the be-
ginning of the constructive process when lots of timeslots are still available and
a different position for an event can have catastrophic effects on the rest of the
timetable. This led us to try to narrow down some excessive change by allowing
the above voting mechanism to make the decision on where to place an event
just some of the times, while for the rest the algorithm just tries to place events
where they were in the best solution found so far. If this is not possible then
the decision is again made by using opinion information. The simplest choice
of using just the ‘same timeslot’ list, together with a diversification rate of 0.2,
that is 20% of the events are inserted according to the voting mechanism, seems
to be the most effective.

The number of building agents used at each iteration seems to be best set to
1, taking the algorithm further from ACO and much closer to an Iterated Local
Search algorithm [6], where the perturbation is given by the constructive process
which is strongly relying on information on the current best solution.

The algorithm is outlined in Algorithm 1, where n indicates the number
of events, ≺ is the fixed order in which events are considered for insertion, s0

is the initial random solution, H is the set of heuristics used to initialise and
update the opinion lists, Ai is the partial assignment when the first i events
have been inserted into the timetable, the function rand() produces a random
number between 0 and 1, v(Ai−1, tj) is the vote that the events in the ‘same
timeslot’ list of event ei give to a suitable timeslot tj , s is the current solution,
and sbest is the best solution found so far.



Algorithm 1 The opinion algorithm.

input: A problem instance I
sort the events according to ≺, resulting in e1 ≺ e2 ≺ · · · ≺ en
s0 ← Initial Random Assignment()

s0 ← Local Search()

Initialise Opinion Lists(s0, H)

while time limit not reached do
A0 ← ∅
for i = 1 to n do

if rand() < 0.8 and position of ei in the current solution is free then
copy timeslot t and room r from the position of ei in the current solution

else
compute available timeslots tj ;
add up the votes v(Ai−1, tj) from the events in the ‘same timeslot’ list of
event ei for each available timeslot;
choose among them the timeslot t and room r according to probability dis-
tribution P for event ei resulting from the votes v(Ai−1, tj) and the least
suitable room heuristic;
Ai ← Ai−1 ∪ (ei, t, r).

end if
end for
s← An
s←Local Search()

sbest ← best of s and sbest

Update Opinion Lists(sbest, H)

end while
output: An optimized assignment sbest for I



4 The local search

The effective local search used is due to Socha and Chiarandini [3, 9]. It consists
of a stochastic process in two phases: the first phase to improve an infeasible
timetable so that it becomes feasible by reducing the number of timeslots used;
and the second phase to increase the quality of a feasible timetable by reducing
the number of soft constraint violations. Two basic moves are considered in both
phases: moving an event to a different suitable place, and swaping timeslots and
rooms of two events so that they still are in suitable places. A suitable place for
an event here means a timeslot and room pair where the event will not violate
any hard constraints. Note that in the case of the first phase solving feasibility
this can mean a timeslot greater than the given limit of 45.

Some further improvements are obtained by means of a matching algorithm,
to re-assign rooms to events every time that an event is moved into a timeslot,
and by means of Kempe chain interchanges, that is by exchanging all the events
in two given timeslots that are connected because of student sharing and re-
assigning rooms via the matching algorithm.

5 Results

Results show that the opinion algorithm presented in the paper is promising.
We tested the algorithm on the 20 benchmark instances of the International

Timetabling Competition. They can be downloaded from the competition web-
site [4], where results of the best participants to the competition can also be
found. They were produced by a random instance generator, with size between
350 and 440 events, with between 200 and 300 students, and around 10 rooms.
Other parameters needed by the generator to produce instances are the number
of facilities, the approximate number of facilities per room, the percentage of
facilities use, the maximum number of events per student, and the maximum
number of students per event Perfect solutions, i.e. solutions with no constraint
violations, exist for all of the 20 instances.

Instance 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Best 98 57 145 201 160 50 31 80 86 139 116 140 143 66 94 76 152 69 180 20

Mean 110.6 77.6 150.6 208.4 185.7 62.6 43 97.2 110.6 173.4 130 167.2 160.8 74.8 101.2 102.2 176 81.8 192.8 37.8
Random 229 204 246 382 345 176 125 206 200 246 253 298 322 276 235 161 349 190 336 131

Table 1. Reported are the mean and the best value found by our algorithm on 5 runs
per each instance. The last row of the table shows results of the random version of the
algorithm on one run per each instance.

We ran 5 runs per instance for 20000 seconds on a group of 2.66 GHz Pentium
4 PCs, a much longer time than the one allowed for the competition. Indeed the
algorithm manages to find good results. We report in Table 1 the best value
found on the 5 runs for each instance, and the mean value of the 5 runs. We can



deduce that the algorithm appears to be reasonably stable, as the mean values
are in general not too far from the best.

We also tested a version of the algorithm where, when not copying the current
best solution, the decision of where to put an event are randomly taken, as
opposed to probabilistically based on the opinion lists information. We show
that the algorithm is indeed carrying important information for the building of
good timetables as the random version is much worse. Results of one run per
instance of the random version of the algorithm are reported in the last row
labeled ‘Random’ in Table 1.

6 Conclusions

We presented some new ideas to tackle general timetabling problems, based
on the fundamental observation that it is the relative position of events with
respect to each other that determines the quality of a timetable. This led us to
believe that it is important to take into account what other events might have
to say on the placement of an event into the timetable. We therefore proposed
a constructive approach that uses information on whether events want to be in
the same timeslot as other events. We keep this information for each event in an
opinion list of events that have something to say about being in the same timeslot
as that event. The opinion lists play here a role very similar, yet different, to the
role of pheromone in ant algorithms.

More work needs to be done to incorporate different types of opinions and
different ways of rewarding events’ opinions when they lead to good solutions.
Nonetheless we showed that the direction of this research is promising, as the
algorithm is carrying important information.
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