A MAX-MZIN Ant System for the University
Course Timetabling Problem

Krzysztof Socha, Joshua Knowles, and Michael Sampels

IRIDIA, Université Libre de Bruxelles, CP 194/6,
Av. Franklin D. Roosevelt 50, 1050 Bruxelles, Belgium
{ksocha| jknowles|msampels}@ulb.ac.be
http://iridia.ulb.ac.be

Abstract. We consider a simplification of a typical university course
timetabling problem involving three types of hard and three types of soft
constraints. A MAX-MZIN Ant System, which makes use of a separate
local search routine, is proposed for tackling this problem. We devise an
appropriate construction graph and pheromone matrix representation
after considering alternatives. The resulting algorithm is tested over a
set of eleven instances from three classes of the problem. The results
demonstrate that the ant system is able to construct significantly better
timetables than an algorithm that iterates the local search procedure
from random starting solutions.

1 Introduction

Course timetabling problems are periodically faced by virtually every school,
college and university in the world. In a basic problem, a set of times must be
assigned to a set of events (e.g., classes, lectures, tutorials, etc.) in such a way that
all of the students can attend all of their respective events. Some pairs of events
are edge-constrained (e.g., some students must attend both events), so that they
must be scheduled at different times, and this yields what is essentially a form of
vertex colouring problem. In addition, real timetables must usually satisfy a large
and diverse array of supplementary constraints which are difficult to describe in
a generic manner. However, the general university course timetabling problem
(UCTP) is known to be NP-hard, as are many of the subproblems associated
with additional constraints [5,9,22]. Of course, the difficulty of any particular
instance of the UCTP depends on many factors and, while little is known about
how to estimate difficulty, it seems that the assignment of rooms makes the
problem significantly harder than vertex colouring, in general.

Current methods for tackling timetabling problems include evolutionary algo-
rithms [6], simulated annealing [13] and tabu search [14]. Many problem-specific
heuristics also exist for timetabling and its associated sub-problems. These have
been used within evolutionary methods and other generic search methods, ei-
ther as ‘hyper-heuristics’ [1,7], or to repair or decode indirect solution repre-
sentations [16]. Local search has also been used successfully within a memetic
algorithm to do real-world exam timetabling [3]. Although several ant colony

optimization (ACO) algorithms [2,11,21] have been previously proposed for
other constraint satisfaction problems [18], including vertex-coloring [8], a full
timetabling problem has not been tackled before using ACO.

The work presented here arises out of the Metaheuristics Network! (MN) —
a Furopean Commission project undertaken jointly by five European institutes
— which seeks to compare metaheuristics on different combinatorial optimiza-
tion problems. In the current phase of the four-year project, a university course
timetabling problem is being considered. In this phase, five metaheuristics, in-
cluding ACO, will be evaluated and compared on instances from three UCTP
classes. As a potential entry for evaluation by the MN, we developed a MAX-
MIN Ant System (MMAS) [21] algorithm for the UCTP. In this paper we
describe this algorithm, discussing the selection of an appropriate construction
graph and pheromone representation, the local search, the heuristic information,
and other factors. We then report on experiments in which the performance of
the MMAS algorithm is evaluated with respect to using the local search alone,
in a random-restart algorithm.

The remainder of this paper is organized as follows: Section 2 defines the
particular timetabling problem considered and specifies how instances of dif-
ferent classes were generated. A brief description of the local search is also in-
cluded. Section 3 describes the design of the MMAS algorithm, focusing on the
key aspects of representation and heuristics. Section 4 reports the experimental
method and computational results of the comparison with the random restart
local search. In Sect. 5, conclusions are drawn.

2 The University Course Timetabling Problem

The timetabling problem considered by the MN is similar to one initially pre-
sented by Paechter in [15]. It is a reduction of a typical university course time-
tabling problem [6, 16]. It consists of a set of n events E to be scheduled in a
set of timeslots T' = {¢1,...,t;x} (k =45, 5 days of 9 hours each), a set of rooms
R in which events can take place, a set of students S who attend the events,
and a set of features F' satisfied by rooms and required by events. Each student
attends a number of events and each room has a maximum capacity. A feasible
timetable is one in which all events have been assigned a timeslot and a room
so that the following hard constraints are satisfied:

— no student attends more than one event at the same time;

— the room is big enough for all the attending students and satisfies all the
features required by the event;

— only one event is in each room at any timeslot.

In addition, a feasible candidate timetable is penalized equally for each occur-
rence of the following soft constraint violations:

— a student has a class in the last slot of the day;

! http://www.metaheuristics.org .

— a student has more than two classes in a row;
— a student has exactly one class on a day.

Feasible solutions are always considered to be superior to infeasible solu-
tions, independently of the numbers of soft constraint violations. In fact, in any
comparison, all infeasible solutions are to be considered equally worthless. The
objective is to minimize the number of soft constraint violations (#scv) in a
feasible solution.

2.1 Problem Instances

Instances of the UCTP are constructed using a generator written by Paechter?.
The generator makes instances for which a perfect solution exists, that is, a
timetable having no hard or soft constraint violations. The generator is called
with eight command line parameters that allow various aspects of the instance
to be specified, plus a random seed. For the comparison being carried out by the
MN, three classes of instance have been chosen, reflecting realistic timetabling
problems of varying sizes. These classes are defined by the values of the input
parameters to the generator, and different instances of the class can be generated
by changing the random seed value. The parameter values defining the classes
are given in Tab. 1.

Table 1. Parameter values for the three UCTP classes.

Class small medium large
Num_events 100 400 400
Num_rooms 5 10 10
Num_features 5 5 10
Approx_features_per_room 3 3 5
Percent_feature_use 70 80 90
Num_students 80 200 400
Mazx_events_per_student 20 20 20
Maz_students_per_event 20 50 100

For each class of problem, a time limit for producing a timetable has been de-
termined. The time limits for the problem classes small, medium, and large are
respectively 90, 900, and 9000 seconds. These limits were derived experimentally.

2.2 Solution Representation and Local Search

To make comparison and evaluation meaningful, all metaheuristics developed
for the MN project, including the algorithm described here, employ the same

2 http://www.dcs.napier.ac.uk/ benp .

solution representation, neighborhood structure, and local search routine (where
applicable), as described fully in [19].

A solution vector is an element of TF and represents an assignment of events
to timeslots. The assignment of each event-timeslot pair to a room is not under
the direct influence of the metaheuristics (or local search routine). Instead, the
room assignment is carried out using a deterministic network flow algorithm.
The local search routine (LS) is a first-improvement search based on two move
operators. The first operator moves a single event to a different timeslot. The
second swaps the timeslots of two events. The LS is deterministic and ends when
a true local optimum is reached. The LS makes extensive use of delta evaluation
of solutions so that many neighboring timetables can be considered in a short
time.

3 Design of an MMAS for Timetabling

Given the constraints on the representation discussed in the last section, we can
now consider the choices open to us, in designing an effective MMAS for the
UCTP. We must first decide how to transform the assignment problem (assigning
events to timeslots) into an optimal path problem which the ants can tackle.
To do this we must select an appropriate construction graph for the ants to
follow. We must then decide on an appropriate pheromone matrix and heuristic
information to influence the paths the ants will take through the graph.

3.1 Construction Graph

One of the cardinal elements of the ACO metaheuristic is the mapping of the
problem onto a construction graph [10,12], so that a path through the graph
represents a solution to the problem. In our formulation of the UCTP we are
required to assign each of |E| events to one of |T| timeslots. In the most direct
representation the construction graph is given by F x T’ given this graph we
can then decide whether the ants move along a list of the timeslots, and choose
events to be placed in them, or move along a list of the events and place them in
the timeslots. Fig. 1 and Fig. 2 depict, respectively, these construction graphs.
As shown in Fig. 1, the first construction graph must use a set of virtual
timeslots 7" = {}, ..., 1|5}, because exactly |E| assignments must be made in
the construction of a timetable, but in general |T'| < |E|. Each of the virtual
timeslots maps to one of the actual timeslots. To use this representation then,
requires us to define an injection ¢ : T/ — T, designating how the virtual times-
lots relate to the actual ones. One could use for example the injection ¢ : t; — tp

with h = [%—‘ In this way, the timetable would be constructed sequentially
through the week. However, for certain problems, giving equal numbers of events
to each timeslot may be a long way from optimal. Other injection functions are
also possible but may contain similar implicit biases.

The simpler representation (Fig. 2), where ants walk along a list of events,

choosing a timeslot for each, does not require the additional complication of

Stop

Fig. 1. Each ant follows a list of virtual timeslots, and for each such timeslot ¢’ € 7",
it chooses an event e € E to be placed in this timeslot. At each step an ant can choose
any possible transition

el eZ
t
Start Stop
l

Fig. 2. Each ant follows a list of events, and for each event e € E, an ant chooses a
timeslot ¢ € T'. Each event has to be put exactly once into a timeslot, and there may
be more than one event in a timeslot, so at each step an ant can choose any possible
transition

(]

using virtual timeslots and does not seem to have any obvious disadvantages. In
fact, it allows us the opportunity of using a heuristically ordered list of events.
By carrying out some pre-calculation we should be able to order the events so
that the most ‘difficult’ events are placed into the timetable first, when there are
still many timeslots with few or no occupied rooms. For these reasons we choose
to use this representation.

As the ants traverse our chosen construction graph, they construct partial
assignments A; : E; — T for i = 0,...,|E|, where E; = {e1,...,e;}. An ant
starts with the empty assignment Ag = (). After the construction of A;_1, the
assignment A; is built probabilistically as 4; = A;—1 U {(e;, t)}. The timeslot ¢
is chosen randomly out of T" according to probabilities p., ; that depend on the
pheromone matrix 7(A; 1) € [Tmins Tmaz) =L (Tmin, Tmaz € R) and any heuristic
information n(A;_1) given by:

(e (Aima))® - (e (A;i—1))?
> oer(Tes) (Ai=1))* - (N(e, 0)(Ai-1))?

Pest(T(Ai—1),m(Ai-1)) (1)

In this general form of the equation, both the pheromone information 7
and the heuristic information 1 take as argument the partial assignment A; ;.3
The impact of the pheromone and the heuristic information can be weighted
by parameters a and 3. In the following sections, we consider different ways of
implementing the pheromone and heuristic information.

3.2 Pheromone Matrix

In a first representation, we let pheromones indicate the absolute position where
events should be placed. With this representation the pheromone matrix is given
by 7(A;) = 7,4 =1,...,|E|, i.e., the pheromone does not depend on the partial
assignments A;. Note that in this case the pheromone will be associated with
nodes in the construction graph rather than edges between the nodes.

A disadvantage of this direct pheromone representation is that the absolute
position of events in the timeslots does not matter very much in producing a
good timetable. It is the relative placement of events which is important. For
example, given a perfect timetable, it is usually possible to permute many groups
of timeslots without affecting the quality of the timetable. As a result, this
choice of representation can cause slower learning because during construction
of solutions, an early assignment of an event to an ‘undesirable’ timeslot may
cause conflicts with many supposedly desirable assignments downstream, leading
to a poor timetable. This leads to a very noisy positive feedback signal.

In a second representation the pheromone values are indirectly defined. To
do this we use an auxiliary matrix p € Rf *E to indicate which events should
(or should not) be put together with other events in the same timeslot. Now,
the values 7(. 4 (A;) can be expressed in terms of y and A; by

if A;7'(t) =0,

A _ Tm(lfl?
T(e)(Ai) = min . 41, p(e, €’) otherwise.

Giving feedback to these values p, the algorithm is able to learn which events
should mot go together in the same timeslot. This information can be learned
without relation to the particular timeslot numbers. This representation looks
promising because it allows the ants to learn something more directly useful
to the construction of feasible timetables. However, it also has some disadvan-
tages. For solving the soft constraints defined in Sect. 2, certain inter-timeslot
relations between events matter, in addition to the intra-timeslot relations. This
pheromone representation does not encode this extra information at all.

Some experimentation with the two different pheromone matrices indicated
that the first one performed significantly better when the local search procedure
was also used. Even though it is not ideal for the reasons stated above, it is ca-
pable of guiding the ants to construct timetables which meet the soft constraints
as well as the hard ones. The problem of noisy feedback from this representation
is also somewhat reduced when using the local search.

3 For 7 this is done to allow an indirect pheromone representation to be specified.

Clearly, other pheromone representations are possible, but with the variety
of constraints which must be satisfied in the UCTP, it is difficult to design one
that encodes all the relevant information in a simple manner. For the moment,
the direct coding is the best compromise we have found.

3.3 Heuristic Information

We now consider possible methods for computing the heuristic information
N(e,t)(Ai—1). A simple method is the following:

1.0
Ai* =
e (Ai-1) = 15 + Viety(Ai-1)

where Vi 4)(A;—1) counts the additional number of violations caused by adding
(e,t) to the partial assignment A; 1. The function V may be a weighted sum of
several or all of the soft and hard constraints. However, due to the nature of the
UCTP, the computational cost of calculating some types of constraint violations
can be rather high. We can choose to take advantage of significant heuristic
information to guide the construction but only at the cost of being able to make
fewer iterations of the algorithm in the given time limit. We conducted some
investigations to assess the balance of this tradeoff and found that the use of
heuristic information did not improve the quality of timetables constructed by
the MMAS with local search. Without the use of LS, heuristic information does
improve solution quality, but not to the same degree as LS.

3.4 Algorithm Description

Our MAX-MIN Ant System for the UCTP is shown in Alg. 1. A colony of m
ants is used and at each iteration, each ant constructs a complete event-timeslot
assignment by placing events, one by one, into the timeslots. The events are
taken in a prescribed order which is used by all ants. The order is calculated
before the run based on edge constraints between the events. The choice of
which timeslot to assign to each event is a biased random choice influenced
by the pheromone level 7. +)(A;) as described in (1). The pheromone values are
initialized to a parameter 7,,4,, and then updated by a global pheromone update
rule. At the end of the iterative construction, an event-timeslot assignment is
converted into a candidate solution (timetable) using the matching algorithm.
After all m ants have generated their candidate solution, one solution is chosen
based on a fitness function. This candidate solution is further improved by the
local search routine. If the solution found is better than the previous global
best solution, it is replaced by the new solution. Then the global update on
the pheromone values is performed using the global best solution. The values of
the pheromone corresponding to the global best solution are increased and then
all the pheromone levels in the matrix are reduced according to the evaporation
coeflicient. Finally, some pheromone values are adjusted so that they all lie within

Algorithm 1 MAX-MZN Ant System for the UCTP

input: A problem instance I
Tmax < 1
7(e,t) — Tmaz ¥V (e,t) € EXT
calculate c(e,e’) V (e, ¢’) € E?
calculate d(e)
sort E according to <, resulting in e; < ez <--- < ey
while time limit not reached do
for a =1 tom do
{construction process of ant a}
Ag — 0
for i =1 to |E| do
choose timeslot ¢ randomly according to probabilities pe,,: for event e;
A — A; 1 U {(6¢,t)}
end for
C « solution after applying matching algorithm to A,
Citeration best < best of C and Citeration best
end for
Cliteration best < solution after applying local search to Cliteration best
Cglobal best < best of Citeration best and C‘global best
global pheromone update for 7 using Cyiopal bests Tmins and Tmaz
end while
output: An optimized candidate solution Cyiopal pest for I

the bounds defined by 7,4 and Tp,;,. The whole process is repeated, until the
time limit is reached.

Some parts of Alg. 1 are now described in more detail. In a pre-calculation
for events e, e’ € E the following parameters are determined:

c(e,€') := 1 if there are students following both e and €', 0 otherwise, and
d(e):=|{e' € E\ {e} | cle,e') # 0} .
We define a total order < on the events by

e<e =dle)>de)v
d(e) =d(e")Nl(e) <I(e) .

Here, [: E — N is an injective function that is only used to handle ties. We define
E; :={e,...,e;} for the totally ordered events denoted as e; < ea < ... < ey,.

Only the solution that causes the fewest number of hard constraint violations
is selected for improvement by the LS. Ties are broken randomly. The pheromone
matrix is updated only once per iteration, and the global best solution is used
for update. Let Agiobal best be the assignment of the best candidate solution
Cyiobal vest found since the beginning. The following update rule is used:

=) ey 1A Agiobat best(€) =,
(et) (1=p) - Te) otherwise,

where p € [0,1] is the evaporation rate. Pheromone update is completed using
the following:
Tmin if T(e,t) < Tmin,
Tle,t) < § Tmaz if T(e,t) > Tmams
T(e,ty Otherwise.

3.5 Parameters

The development of an effective MMAS for an optimization problem also re-
quires that appropriate parameters be chosen for typical problem instances. In
our case, we consider as typical those problem instances made by the generator
described in Sect. 2.1. We tested several configurations of our MMAS on prob-
lem instances from the classes listed in Tab. 1. The best results were obtained
using the parameters listed in Tab. 2.

Table 2. Parameter configurations used in the comparison.

Parameter small medium large

p 0.30 0.30 0.30
Tmax = % 3.3 3.3 3.3
Tonin 0.0078 0.0019 0.0019
« 1.0 1.0 1.0
8 0.0 0.0 0.0
m 10 10 10

The values of 7,,;, were calculated so that at convergence (when one ‘best’
path exists with a pheromone value of 7,4, on each of its constituent elements,
and all other elements in the pheromone matrix have the value 7,,,) a path
constructed by an ant will be expected to differ from the best path in 20 % of
its elements. The value 20 % was chosen to reflect the fact that a fairly large
‘mutation’ is needed to push the solution into a different basin of attraction for
the local search.

4 Assessment of the Developed MMAS

To assess the developed MMAS, we consider whether the ants genuinely learn to
build better timetables, as compared to a random restart local search (RRLS).
This RRLS iterates the same LS as used by MMAS from random starting
solutions and stores the best solution found.

We tested both the developed MMAS and the RRLS on previously unseen
problem instances made by the generator mentioned in Sect. 2.1. For this test
study, we generated eleven test instances: five small, five medium, and one large.
For each of them, we ran our algorithms for 50, 40, and 10 independent trials,

Table 3. Median of the number of soft constraint violations observed in independent
trials of MMAS and RRLS on different problem instances, together with the p-value
for the null hypothesis that the distributions are equal. In the cases where greater than
50 % of runs resulted in no feasible solution the median cannot be calculated. Here,
the fraction of unsuccessful runs is given. (In all other cases 100 % of the runs resulted
in feasible solutions.) All infeasible solutions are given the symbolic value co. This is
correctly handled by the Mann-Whitney test.

Instance Median of #scv p-value
MMAS RRLS
smallil 1 8 <2.10°1°
small2 3 11 <2-1071
small3 1 8 <2.10716
smalld 1 7 <2-1071¢
smallb 0 5 <2-10716
mediuml 195 199 0.017
medium2 184 202.5 4.3-107°
medium3 248 (775 %) 81-107'2
mediumé 164.5 177.5 0.017
medium5 219.5 (100 %) 2.2-10716
large 851.5 (100 %) 6.4-107°

giving each trial a time limit of 90, 900, and 9000 seconds, respectively. All
the tests were run on a PC with an AMD Athlon 1100 Mhz CPU under Linux
using the GNU C++ compiler gec version 2.95.3.4 As random number generator
we used ran0 from the Numerical Recipes [17]. For the reproducibility of the
results on another architecture, we observed that on our architecture one step of
the local search has an average running time of 0.45, 1.4, and 1.1 milliseconds,
respectively.

Boxplots showing the distributions of the ranks of the obtained results are
shown in Fig. 3. The Mann-Whitney test (see [4]) was used to test the hypothesis
Hj that the distribution functions of the solutions found by MMAS and RRLS
were the same. The p-values for this test are given in Tab. 3, along with the
median number of soft constraint violations obtained.

For each of the tested problem instances we got with very high statistical
significance the result that MMAS performs better than RRLS. For some test
instances of medium and large size some runs of RRLS resulted in infeasible
solutions. In particular, the RRLS was unable to produce any feasible solution
for the large problem instance.

4 Both algorithms, the test instances and a detailed evaluation of the generated results
can be found on http://iridia.ulb.ac.be/ msampels/tt.data .

small1 MMAS | ‘ [|-----]

s s | o I ——

small2 MMAS - F------- { ‘ } ,,,,,,,, i

small2 RRLS — bomm e :l:l ,,,,,,,,,,,,, i
small3 MMAS | \ ‘ J--ooeeeeee i

small3 RRLS — e I:} 777777 i
small4 MMAS [} i

small4 RRLS — [l:l:l 7777777 i
small5 MMAS | : ,,,,, i

small5 RRLS | [{ ‘ } ,,,,,,]
- 8 g 8 2 2
medium1 MMAS - f-------m - | ‘ ‘ ,,,,,,,,,,,,,,,,,,,,, i
medium1 RRLS — b | ‘ ‘ ,,,,,,,,,,,, i
medium2 MMAS ~ f---------- | [- i

medium2 RRLS —

medium3 MMAS —

medium3 RRLS —

medium4 MMAS —

medium4 RRLS —

medium5 MMAS —

medium5 RRLS —

large MMAS — R { ,,,,,,,,,,, 4

large RRLS —

5
10 —
15 —

Fig. 3. Boxplots showing the relative distribution of the number of soft constraint
violations for MMAS (shadowed) and RRLS (white) on all test instances. This is the
distribution of the ranks of the absolute values in an ordered list, where equal values
are assigned to the mean of the covered ranks. A box shows the range between the
25 % and the 75 % quantile of the data. The median of the data is indicated by a bar.
The whiskers extend to the most extreme data point which is no more than 1.5 times
the interquantile range from the box. Outliers are indicated as circles

5 Conclusions

We devised a construction graph and a pheromone model appropriate for uni-
versity course timetabling. Using these we were able to specify the first ACO
algorithm for this problem. Compared to a random restart local search, it showed
significantly better performance on a set of typical problem instances, indicat-
ing that it can guide the local search effectively. Our algorithm underlines the
fact that ant systems are able to handle problems with multiple heterogeneous
constraints. Even without using problem-specific heuristic information it is pos-
sible to generate good solutions. With the use of a basic first-improvement local
search, we found that MMAS permits a quite simple handling of timetabling
problems. With an improved local search, exploiting more problem specific op-
erators, we would expect a further improvement in performance.

Preliminary comparisons indicate that our MMAS is competitive with the
other metaheuristics developed in the Metaheuristics Network for the UCTP.
Further results on the comparison of the metaheuristics will appear in [20].

Acknowledgments. We would like to thank Ben Paechter and Olivia Rossi-
Doria for the implementation of data structures and routines for the local search.
Our work was supported by the Metaheuristics Network, a Research Training
Network funded by the Improving Human Potential Programme of the CEC,
grant HPRN-CT-1999-00106. Joshua Knowles is additionally funded by a CEC
Marie Curie Research Fellowship, contract number: HPMF-CT-2000-00992. The
information provided is the sole responsibility of the authors and does not reflect
the Community’s opinion. The Community is not responsible for any use that
might be made of data appearing in this publication.

References

1. C. Blum, M. Dorigo, S. Correia, O. Rossi-Doria, B. Paechter, and M. Snoek. A GA
evolving instructions for a timetable builder. In Proceedings of the 4th International
Conference on Practice and Theory of Automated Timetabling (PATAT 2002) (to
appear), 2002.

2. E. Bonabeau, M. Dorigo, and G. Theraulaz. From Natural to Artificial Swarm
Intelligence. Oxford University Press, 1999.

3. E. K. Burke, J. P. Newall, and R. F. Weare. A memetic algorithm for university
exam timetabling. In Proceedings of the 1st International Conference on Practice
and Theory of Automated Timetabling (PATAT 1995), LNCS 1153, pages 241-251.
Springer-Verlag, 1996.

4. W. J. Conover. Practical Nonparametric Statistics. John Wiley & Sons, 3rd edition,
1999.

5. T. B. Cooper and J. H. Kingston. The complexity of timetable construction prob-
lems. In Proceedings of the 1st International Conference on Practice and Theory
of Automated Timetabling (PATAT 1995), LNCS 1153, pages 283-295. Springer-
Verlag, 1996.

6. D. Corne, P. Ross, and H.-L. Fang. Evolutionary timetabling: Practice, prospects
and work in progress. In Proceedings of the UK Planning and Scheduling SIG
Workshop, Strathclyde, 1994.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

P. Cowling, G. Kendall, and E. Soubeiga. A hyperheuristic approach to scheduling
a sales summit. In Proceedings of the 3rd International Conference on Practice
and Theory of Automated Timetabling (PATAT 2000), LNCS 2079, pages 176—
190. Springer-Verlag, 2001.

D. Costa and A. Hertz. Ants can colour graphs. Journal of the Operational Research
Society, 48:295-305, 1997.

D. de Werra. The combinatorics of timetabling. Furopean Journal of Operational
Research, 96:504-513, 1997.

M. Dorigo and G. Di Caro. The Ant Colony Optimization meta-heuristic. In
D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimization. McGraw-
Hill, 1999.

M. Dorigo, G. Di Caro, and L. M. Gambardella. Ant algorithms for discrete
optimization. Artificial Life, 5:137-172, 1999.

M. Dorigo, V. Maniezzo, and A. Colorni. The Ant System: Optimization by a
colony of cooperating agents. IEEFE Transactions on Systems, Man, and Cyber-
netics, 26:29-41, 1996.

M. A. S. Elmohamed, P. Coddington, and G. Fox. A comparison of annealing
techniques for academic course scheduling. In Proceedings of the 2nd International
Conference on Practice and Theory of Automated Timetabling (PATAT 1997),
pages 92-115, 1998.

L. D. Gaspero and A. Schaerf. Tabu search techniques for examination timetabling.
In Proceedings of the 3rd International Conference on Practice and Theory of Au-
tomated Timetabling (PATAT 2000), LNCS 2079, pages 104-117. Springer-Verlag,
2001.

B. Paechter. Course timetabling. Evonet Summer School, 2001.
http://evonet.dcs.napier.ac.uk /summerschool2001/problems.html .

B. Paechter, R. C. Rankin, A. Cumming, and T. C. Fogarty. Timetabling the
classes of an entire university with an evolutionary algorithm. In Proceedings of
the 5th International Conference on Parallel Problem Solving from Nature (PPSN
V), LNCS 1498, pages 865-874. Springer-Verlag, 1998.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical
Recipes in C. Cambridge University Press, 2nd edition, 1993.

A. Roli, C. Blum, and M. Dorigo. ACO for maximal constraint satisfaction prob-
lems. In Proceedings of the 4th Metaheuristics International Conference (MIC
2001), volume 1, pages 187-191, Porto, Portugal, 2001.

O. Rossi-Doria, C. Blum, J. Knowles, M. Sampels, K. Socha, and B. Paechter. A
local search for the timetabling problem. In Proceedings of the 4th International
Conference on Practice and Theory of Automated Timetabling (PATAT 2002) (to
appear), 2002.

O. Rossi-Doria, M. Sampels, M. Chiarandini, J. Knowles, M. Manfrin, M. Mastro-
lilli, L. Paquete, and B. Paechter. A comparison of the performance of different
metaheuristics on the timetabling problem. In Proceedings of the 4th International
Conference on Practice and Theory of Automated Timetabling (PATAT 2002) (to
appear), 2002.

T. Stiitzle and H. H. Hoos. MAX-MZN Ant System. Future Generation Com-
puter Systems, 16(8):889-914, 2000.

H. M. M. ten Eikelder and R. J. Willemen. Some complexity aspects of secondary
school timetabling problems. In Proceedings of the 8rd International Conference
on Practice and Theory of Automated Timetabling (PATAT 2000), LNCS 2079,
pages 18-29. Springer-Verlag, 2001.

