
Journal of Mathematical Modelling and Algorithms 00: 1–24, 2004.
© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

1

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

An Ant Colony Optimization Algorithm for Shop
Scheduling Problems �

CHRISTIAN BLUM and MICHAEL SAMPELS
IRIDIA, Université Libre de Bruxelles, CP 194/6, Av. Franklin D. Roosevelt 50, 1050 Bruxelles,
Belgium

Abstract. We deal with the application of ant colony optimization to group shop scheduling, which
is a general shop scheduling problem that includes, among others, the open shop scheduling problem
and the job shop scheduling problem as special cases. The contributions of this paper are twofold.
First, we propose a neighborhood structure for this problem by extending the well-known neigh-
borhood structure derived by Smutnicki and Nowicki for the job shop scheduling problem. Then,
we develop an ant colony optimization approach, which uses a strong non-delay guidance for con-
structing solutions and which employs black-box local search procedures to improve the constructed
solutions. We compare this algorithm to an adaptation of the tabu search by Nowicki and Smutnicki
to group shop scheduling. Despite its general nature, our algorithm works particularly well when
applied to open shop scheduling instances, where it improves the best known solutions for 15 of the
28 tested instances. Moreover, our algorithm is the first competitive ant colony optimization approach
for job shop scheduling instances.

Mathematics Subject Classifications (2000):

Key words: Scheduling, group shop, job shop, open shop, ant colony optimization.

1. Introduction

Academic shop scheduling problems such as job shop scheduling (JSS) and open
shop scheduling (OSS) are simplified models of scheduling problems often occur-
ring in industrial settings. In general, these shop scheduling problems are N P -hard
and difficult to solve in practice, which justifies the need for efficient methods to
obtain approximate solutions of high quality in a reasonable amount of time. Meta-
heuristics are successful algorithmic concepts to generate approximate solutions to
N P -hard optimization problems. During the last decade many researchers have
successfully tried to apply metaheuristics to shop scheduling problems. However,
due to the quite different characteristics of the different shop scheduling problems,
existing approaches are often too specialized and generally cannot be adapted such

� This work was supported by the “Metaheuristics Network”, a Research Training Network
funded by the Improving Human Potential program of the CEC, grant HPRN-CT-1999-00106. The
information provided is the sole responsibility of the authors and does not reflect the Community’s
opinion. The Community is not responsible for any use that might be made of data appearing in this
publication.

jmmas10.tex; 22/06/2004; 8:25; p.1
VTEX(Ramune) Pips No.: 5381888 artty:res(acapkap:mathfam) v.1.2

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

!

PDF-OUTPUT

2 CHRISTIAN BLUM AND MICHAEL SAMPELS

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

that they work well when applied to other shop scheduling problems. Therefore, in
this work we propose a metaheuristic approach, namely an ant colony optimization
(ACO) approach, to tackle a more general shop scheduling problem called the
group shop scheduling (GSS). The GSS problem includes, among others, the well-
known open shop scheduling (OSS) problem and the job shop scheduling (JSS)
problem as special cases.

Solution Techniques for Shop Scheduling Problems. Especially for the JSS prob-
lem there are many excellent solution techniques to be found in the literature.
Metaheuristics such as tabu search (TS) approaches [14, 32] and local search based
approaches, such as the one proposed in [3], based on the shifting bottleneck proce-
dure [1] have been very successful. These approaches excel others not necessarily
in solution quality, but almost always in computation time. Other metaheuristic
approaches that can not compete with the above-mentioned approaches in terms
of efficiency, but that work well when computation time is of no concern, are an
evolutionary computation (EC) approach [25] and a simulated annealing (SA) ap-
proach [40]. More recently, constraint propagation methods have proven to be very
successful [8, 20]. For an overview of different JSS solution techniques, see [4, 26].

The research activities aimed at tackling the OSS problem have long been dom-
inated by exact methods such as branch & bound [9, 19]. In fact, the algorithm
proposed in [19] is a state-of-the-art algorithm for small and medium size problem
instances. Early metaheuristic approaches such as the EC approach outlined in [21]
were not very successful. The first quite successful algorithm was a TS approach
proposed in [28], which was improved later by an EC approach proposed in [29].
Recently, a new state-of-the-art algorithm for OSS has been accepted for publi-
cation [6]. This algorithm is a hybrid between ant colony optimization and beam
search.

Ant Colony Optimization Applied to Scheduling Problems. Ant colony optimiza-
tion (ACO) [16] is a metaheuristic approach to tackle hard combinatorial optimiza-
tion problems. The main idea of ACO is to use a parametrized probabilistic model
to construct solutions that are then used to update the model parameter values with
the aim of increasing the probability of constructing high quality solutions. In every
iteration, a number of agents (artificial ants) construct solutions by probabilistically
making a number of local decisions. ACO has been proven a successful tech-
nique for numerous NP -hard combinatorial optimization problems. In the field
of scheduling, ACO has been successfully applied to the single machine weighted
tardiness (SMWT) problem [15], the flow shop scheduling (FSS) problem [36],
and the resource constraint project scheduling (RCPS) problem [30]. However, the
application to shop scheduling problems – in particular JSS and OSS – has proven
quite difficult.

Related Work. The first ACO algorithm to tackle a shop scheduling problem was
the one by Colorni et al. [12] to tackle the JSS problem. The performance of this

jmmas10.tex; 22/06/2004; 8:25; p.2

AN ANT COLONY OPTIMIZATION ALGORITHM 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

algorithm was far from reaching state-of-the-art performance. A first attempt to
develop an ACO algorithm to tackle the OSS problem was made in [33]. However,
the experimental evaluation was quite limited. In [5] we proposed a first successful
algorithm to tackle the GSS problem. The results – especially when applied to OSS
instances – were still quite far from the performance of state-of-the-art algorithms.

Dorndorf and Pesch [18] proposed a genetic algorithm that is based on learning
the priority rules to be used at each step of constructing a solution. One of the main
differences between this algorithm and our ACO approach lies in the fact that our
algorithm learns – assisted by the priority rules – which operation to choose for
each construction step. An advantage of our algorithm is that the construction of
an optimal solution is never excluded, which might be the case in the algorithm
by Dorndorf and Pesch. Furthermore, our algorithm obtains better computational
results.

The outline of the paper is as follows. In Section 2, we outline the group shop
scheduling problem. In Section 3, we introduce a neighborhood structure for this
problem before we outline our ant colony optimization approach to the group shop
scheduling problem in Section 4. Section 5 is dedicated to the experimental eval-
uation of the ACO approach. First, we propose a new set of benchmark instances.
Then, we fine-tune the solution construction mechanism of the ACO algorithm
before we present experimental results. We compare the ACO approach to an
adaptation of the well-known TS approach by Nowicki and Smutnicki [32] to group
shop scheduling. Finally, in Section 6, we provide a summary and conclusions.

2. Group Shop Scheduling

In shop scheduling problems, jobs (respectively, operations) are to be processed
by machines with the objective of minimizing some function of the completion
times of the jobs. In the following we give a formal description of a general shop
scheduling problem, called the group shop scheduling (GSS) problem, that includes
the JSS problem as well as the OSS problem. This problem was introduced – under
the name FOP Shop Scheduling – in 1997 by the TU Eindhoven [39] as the subject
of a mathematics contest.

The GSS problem may be formulated as follows. Given is a set of operations
O = {o1, . . . , on}. Each operation o ∈ O has a processing time p(o). The structure
of the problem is defined as follows:

– Set O is partitioned into subsets M = {M1, . . . ,M|M|}. The operations in
Mi ∈ M have to be processed by the same machine. For the sake of simplicity
we identify each set Mi ∈ M of operations with the machine they have to be
processed by, and call Mi a machine.

– Set O is also partitioned into subsets J = {J1, . . . ,J|J|}, where each set of
operations Jj ∈ J is called a job.

– Furthermore, given is a refinement of the job-partition J into a group-partition
G = {G1, . . . ,G|G|}, where each set of operations Gl ∈ G is called a group.

jmmas10.tex; 22/06/2004; 8:25; p.3

4 CHRISTIAN BLUM AND MICHAEL SAMPELS

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

Note that all operations belonging to a certain group belong to the same job.
This holds true because the group-partition is a refinement of the job-partition.

– The groups of each job are linearly ordered, i.e., given is a permutation of
the groups of each job. If, in such a permutation, a group Gl comes before a
group Gk, we write Gl � Gk . Equally, we write for all o ∈ Gl and all o′ ∈ Gk

that o � o′, which means that the processing of operation o has to be finished
before the processing of operation o′ can be started. The set of predecessors
of an operation o ∈ O is given by pred(o) ← {o′ ∈ O | o′ � o}. Furthermore,
given two operations o′, o ∈ O with o′ � o, o′ is called a direct predecessor
of o, denoted by o′ �d o, if an operation o′′ ∈ O such that o′ � o′′ � o does
not exist.

Therefore, each operation o ∈ O has to be processed by a machine m(o) ∈ M,
belongs to a job j (o) ∈ J and belongs to a group g(o) ∈ G. In this paper we
consider the case where each machine can process at most one operation at a time.
Operations must be processed without preemption (that is, once the process of an
operation has started it must be completed without interruption).

A solution to an instance of the GSS problem is given by permutations πMi of
the operations in Mi , ∀i ∈ {1, . . . , |M|}, and permutations πGl of the operations in
Gl , ∀l ∈ {1, . . . , |G|}. These permutations define processing orders for all machines
Mi and all groups Gl . Note that not all combinations of permutations are feasible,
because some combinations of permutations might define cycles in the process-
ing orders. There are several possibilities to measure the cost (i.e., to define the
objective function) of a solution. In this paper we deal with an objective function
known as makespan. The goal is to find a solution with minimum makespan. The
makespan of a solution is the time it takes all the operations of an instance to be
processed, assuming the processing of the first operation(s) starts at time zero. The
formal definition of the makespan of a solution depends on the solution represen-
tation that is used. In order to refer to a solution which may be given in any format,
we use the notifier s, with Cmax(s) denoting the makespan of s.

2.1. DISJUNCTIVE GRAPHS

A very popular way to depict shop scheduling instances is the disjunctive graph [35]
Gdis = (V ,A,E), where V is the set of nodes, A is the set of conjunctive (directed)
arcs, and E is the set of disjunctive (undirected) arcs. Given an instance of the
GSS problem, the disjunctive graph Gdis is obtained as follows: For each operation
o ∈ O, a node vo ∈ V is introduced. In the following we identify the nodes of
Gdis with the corresponding operations. Furthermore, for each pair of operations
o, o′ ∈ O with o �d o′, a conjunctive arc ao,o′ ∈ A is introduced. Finally, for
each pair of operations o, o′ ∈ O with either m(o) = m(o′) or g(o) = g(o′),
a disjunctive arc eo,o′ ∈ E is introduced. Figure 1(a) shows the disjunctive graph
of a simple GSS instance with 10 operations partitioned into 3 jobs, 4 machines
and 6 groups: O = {o1, . . . , o10}, J = {J1 = {o1, o2, o3}, J2 = {o4, . . . , o7},

jmmas10.tex; 22/06/2004; 8:25; p.4

AN ANT COLONY OPTIMIZATION ALGORITHM 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

Figure 1. (a) The disjunctive graph of a simple GSS instance. The conjunctive arcs are sim-
plified as inter-group arcs. Furthermore, the disjunctive arcs are shown as dashed (between
pairs of operations from the same machine), respectively dotted (between pairs of operations
from the same group), lines. (b) A feasible solution of the problem instance shown in (a).
The disjunctive arcs are directed and the resulting directed graph does not contain any cycles,
which means that there are no cycles in the processing orders.

J3 = {o8, o9, o10}}, G = {G1 = {o1, o2}, G2 = {o3}, G3 = {o4}, G4 = {o5, o6, o7},
G5 = {o8}, G6 = {o9, o10}, M = {M1 = {o1, o5, o8}, M2 = {o2, o4, o9}, M3 =
{o3, o7},M4 = {o6, o10}}. One way of representing solutions to a GSS problem
instance is the precedence graph. This graph is obtained by directing the disjunc-
tive arcs of the disjunctive graph according to the machine-permutations and the
group-permutations as given by a solution. Figure 1(b) shows a precedence graph
that corresponds to a feasible solution to the GSS problem instance that is shown
in Figure 1(a). The makespan of a solution (in the form of a precedence graph)
is defined as the length of the longest directed path in the graph. Such a path is
commonly called a critical path. The length of a critical path is given by the sum
of the processing times of the operations on that path. Note that there might be
more than one critical path in a solution. Let us assume the following processing
times for the operations of the GSS problem instance that is shown in Figure 1(a).

Operation o1 o2 o3 o4 o5 o6 o7 o8 o9 o10

Processing time 1 3 5 4 3 1 6 2 1 3

Then, the critical path of the solution that is shown in Figure 1(b) is o2-o4-o6-o5-
o7. Therefore, the makespan, i.e., the objective function value, of this solution is
3 + 4 + 1 + 3 + 6 = 17.

As mentioned above, the GSS problem formulation contains the OSS problem
and the JSS problem as extreme cases. Each GSS problem instance that is charac-
terized by the fact that each operation is in its own group is also a JSS problem
instance. Furthermore, each GSS problem instance that is characterized by the
fact that the job-partition is equal to the group-partition is also an OSS problem
instance. As an example, Figure 2(a) shows a JSS version of the GSS problem
instance that is shown in Figure 1(a), whereas Figure 2(b) shows the OSS version.

jmmas10.tex; 22/06/2004; 8:25; p.5

6 CHRISTIAN BLUM AND MICHAEL SAMPELS

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

Figure 2. (a) A JSS version of the GSS problem instance that is shown in Figure 1(a). The
instance is a JSS instance, because each operation is in its own group. (b) The OSS version
of the GSS problem instance that is shown in Figure 1(a). The instance is an OSS instance
because the job-partition is equal to the group-partition. In other words: all the operations of a
job are in one group.

2.2. PERMUTATION REPRESENTATION

Some permutations of all operations correspond to feasible solutions of GSS prob-
lem instances. This is due to the fact that a permutation of all operations contains
the machine-permutations and the group-permutations. As an example consider
permutation (o2, o1, o4, o6, o5, o8, o9, o10, o3, o7) of the 10 operations of the GSS
problem instance that is shown in Figure 1(a). This permutation corresponds to the
solution of this problem instance that is shown in Figure 1(b). This is because it
induces permutation (o2, o1) for group G1, (o6, o5, o7) for group G4, and (o9, o10)

for group G6. Furthermore, it induces permutation (o1, o5, o8) for machine M1,
(o2, o4, o9) for machine M2, (o3, o7) for machine M3, and (o6, o10) for machine
M4. However, note that there is generally a many-to-one mapping from the set of
feasible permutations of all operations to the set of different solutions of a GSS
problem instance.

List scheduler algorithms [22] are often applied in constructing solutions of
shop scheduling problems in permutation form. They are easy to implement and
their complexity is rather low. In the following, we denote solutions consisting of
a sequence of solution components by s. In GSS, each operation o ∈ O is re-
garded as a solution component. Furthermore, partial solutions (in terms of partial
permutations) are denoted by sp.

A list scheduler algorithm builds a permutation of all operations from left to
right by appending at each of n = |O| construction steps an operation from a set
Ot of allowed operations to the current partial permutation. Set Ot is defined as
follows. At each step t ∈ {1, . . . , n} the set O of operations is partitioned into set
O−, which are the operations that are already in the partial solution, and set O+,
which are the operations that still have to be dealt with. In order to exclusively

jmmas10.tex; 22/06/2004; 8:25; p.6

AN ANT COLONY OPTIMIZATION ALGORITHM 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

ALGORITHM 1. List scheduler algorithm for the GSS problem
sp = 〈〉
O+ ← O

for t = 1, . . . , |O|
Ot ← {o ∈ O+ | pred(o) ∩ O+ = ∅}
O ′

t ← Restrict(sp,Ot)

o∗ ← Choose(Ot
′)

sp ← extend sp byappending operation o∗

O+ ← O+ \ {o∗}
end for

generate feasible solutions, Ot is defined – in construction step t – as a subset of
O+ in the following way:

Ot ← {o ∈ O+ | pred(o) ∩ O+ = ∅}, (1)

which means that in each construction step an operation can only be chosen if all its
predecessors are already in the partial solution. The algorithmic framework of a list
scheduler algorithm is shown in Algorithm 1. In each construction step, candidate
list strategies, implemented in function Restrict(sp,Ot), may be applied to further
restrict set Ot . In the following we outline two strategies proposed by Giffler and
Thompson [22]. The first one works as shown in Algorithm 2. The partition of the
set of operations O, with respect to a partial solution sp into O+ and O−, induces
a partition of the operations of every job Jj ∈ J into Jj

+ and Jj
− and of every

machine Mi ∈ M into Mi
+ and Mi

−. First, the earliest possible completion times
tec(o, sp) of all the operations in Ot are calculated. This can be done by deriving
the partial schedule� that is defined by the partial solution sp. Then, one of the
machines M∗, with minimal completion time t∗, is chosen and set Ot

′ is defined
as the set of all operations of Ot which need to be processed by machine M∗ and
whose earliest possible starting time is before t∗. This way of restricting set Ot

produces active schedules.�� Algorithm 1, using the candidate list strategy as given
by Algorithm 2, is commonly called GT algorithm.

Another way of implementing Restrict(sp,Ot) is presented in Algorithm 3. It
works as follows: First, the earliest possible starting time t∗, among all operations
in Ot , is determined. Then, Ot is restricted to all operations that can start at time t∗.
By this way of restricting set Ot , permutations are generated that correspond to

� Note that a schedule is yet another way of representing solutions of shop scheduling problems in
which each operation is given a starting time. Schedules can be derived from (partial) permutations
of operations in a straight-forward way.

�� A feasible schedule is called active if it is not possible to construct another schedule by changing
the processing orders on the machines or in the groups and having at least one operation starting
earlier and no operation finishing later.

jmmas10.tex; 22/06/2004; 8:25; p.7

8 CHRISTIAN BLUM AND MICHAEL SAMPELS

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

ALGORITHM 2. Restrict(sp,Ot) method for producing active schedules
input: sp, Ot

Determine t∗ ← min{tec(o, sp) | o ∈ Ot}
M∗ ← Select randomly from {Mi ∈ M | Mi

+ ∩ Ot �= ∅, ∃o ∈ Mi
+

with tec(o, sp) = t∗}
Ot

′ ← {o ∈ Ot | o ∈ M∗ and tes(o, sp) < t∗}
output: restricted set Ot

′

ALGORITHM 3. Restrict(sp,Ot) method for producing non-delay schedules
input: sp, Ot

Determine t∗ ← min{tes(o, sp) | o ∈ Ot}
Ot

′ ← {o ∈ Ot | tes(o, sp) = t∗}
output: restricted set Ot

′

non-delay schedules.� Algorithm 1 using the candidate list strategy as given by
Algorithm 3 is commonly called ND algorithm.

The function Choose(Ot
′) for selecting an operation from Ot

′ is often imple-
mented by means of priority rules or dispatching rules. Table I shows a selection
thereof. Usually the priority rules are used in a deterministic manner. However,
they may also be used probabilistically (e.g., in a roulette-wheel-selection man-
ner) instead of deterministically. None of these rules can be labelled the “best-
performing” priority rule. Which rule performs best strongly depends on the struc-
ture of the problem instance to be solved. An extensive overview of priority rules
is provided in [24].

Table I. Different priority (or dispatching) rules

Rule Description

Random an operation chosen at random

EST an operation having the earliest starting time

EFT an operation having the earliest finishing time

SPT an operation having the shortest processing time

LPT an operation having the longest processing time

LWR an operation having the least work remaining in the job

MWR an operation having the most work remaining in the job

LTW an operation having the least total work in the job

MTW an operation having the most total work in the job

� A feasible schedule is called non-delay if no machine is kept idle while an operation is waiting
for processing. Non-delay schedules are a subset of active schedules.

jmmas10.tex; 22/06/2004; 8:25; p.8

AN ANT COLONY OPTIMIZATION ALGORITHM 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

3. A Neighborhood Structure for GSS

As outlined in Section 2.1, a directed path P in the precedence graph that corre-
sponds to a feasible solution s is called a critical path, if and only if

∑
o∈P

p(o) =
Cmax(s). M induces a subdivision on a critical path P = (o1, . . . , oq) into machine
blocks of consecutive operations belonging to the same machine, as G induces a
subdivision into group blocks of consecutive operations belonging to the same
group. Brucker et al. [10] proved for the JSS problem that if there is a feasible solu-
tion s′ with Cmax(s

′) < Cmax(s), then there is a machine block Bi
M = (oi

1, . . . , o
i
mi

)

on a critical path P of s such that either ∃o ∈ Bi
M , o �= oi

1 with o �s ′
oi

1, or
∃o ∈ Bi

M , o �= oi
mi

with oi
mi

�s ′
o, where o �s ′

o′ means that o has to be processed
before o′ in s′ (with o, o′ ∈ O). For the GSS problem, we generalize the above
result.

THEOREM 1. Let s be a feasible solution of a GSS instance. If there exists a
feasible solution s′ with Cmax(s

′) < Cmax(s), then there exists a machine or a
group block Bi = (oi

1, . . . , o
i
ni

) on a critical path P in s, such that either ∃o ∈ Bi ,

o �= oi
1 with o �s ′

oi
1, or ∃o ∈ B, o �= oi

ni
∈ B with oni

�s ′
o.

Proof. Let P be a critical path in s. Let Bi
M = (oi

1, . . . , o
i
mi

) denote the i-th

machine block and B
j

G = (ō
j

1, . . . , ō
j
gj) be the j -th group block on P. Let kM ,

respectively kG, denote the total number of machine blocks, respectively group
blocks. Assume that there is a feasible solution s′ with Cmax(s

′) < Cmax(s) and no
operation of any group or machine block in P is processed in s′ before the first or
after the last operation of the corresponding block. Then ∀i ∈ {1, . . . , kM} it holds
that

oi
1 �s ′

oi
l ∀l ∈ {1, . . . , mi} and oi

l �s ′
oi

mi
∀l ∈ {1, . . . , mi}, (2)

and ∀j ∈ {1, . . . , kG} it holds that

ō
j

1 �s ′
ō

j

l ∀l ∈ {1, . . . , gj } and ō
j

i �s ′
ōj

gj
∀l ∈ {1, . . . , gj }. (3)

Therefore, the precedence graph that corresponds to solution s′ contains a path

(o1
1, u

1
2, . . . , u

1
m1−1, o

1
m1

, . . . , o
kM

1 , u
kM

2 , . . . , u
kM

mkM
−1, o

kM
mkM

), (4)

where (ui
2, . . . , u

i
mi−1) is a permutation of (oi

2, . . . , o
i
mi−1). Furthermore, the prece-

dence graph that corresponds to solution s′ contains a path

(ō1
1, ū

1
2, . . . , ū

1
g1−1, ō

1
g1

, . . . , ō
kG

1 , ū
kG

2 , . . . , ū
kG

gkG
−1, ō

kG
gkG

), (5)

where (ū
j

2, . . . , ū
j

gj −1) is a permutation of (ō
j

2, . . . , ō
j

gj −1). By identifying ui
1 =

oi
1, u

i
mi

= oi
mi

, ū
j

1 = ō
j

1, ū
j
gj = ō

j
gj , we get

Cmax(s
′) �

kM∑
i=1

mi∑
l=1

p(oi
l) =

kM∑
i=1

mi∑
l=1

p(ui
l) = Cmax(s) (6)

jmmas10.tex; 22/06/2004; 8:25; p.9

10 CHRISTIAN BLUM AND MICHAEL SAMPELS

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

and

Cmax(s
′) �

kG∑
j=1

gj∑
l=1

p(ō
j

l) =
kG∑
j=1

gj∑
l=1

p(ū
j

l) = Cmax(s) (7)

which is a contradiction of the assumption. �
Given this theorem, it is reasonable to define a neighborhood of a feasible solu-

tion s of a GSS instance as an extension of the neighborhood structure proposed by
Nowicki and Smutnicki for the JSS problem [32]. The new neighborhood, hence-
forth denoted by N1c,GSS, is defined as follows: A feasible solution s′ is a neighbor
of a feasible solution s (i.e., s′ ∈ N1c,GSS(s)) if, in a critical path P of s for exactly
one machine block or exactly one group block B = (o1, o2, . . . , onk−1, onk

) on P,
the order of o1 and o2 or the order of onk−1 and onk

is swapped in s′. Hence the first
two operations of the first block in P and the last two operations in the last block
of P are excluded.

4. Ant Colony Optimization for GSS

Our ACO approach, henceforth denoted by ACO_GSS, is a MAX-MIN ant
system (MMAS) in the hyper-cube framework (HCF), as proposed by Blum and
Dorigo [7]. MMAS is an improvement of the original ant system (AS), which was
proposed by Dorigo et al. [17]. MMAS differs from AS by applying a lower and
an upper bound, τmin and τmax, to the pheromone values. The lower bound (a small
positive constant) prevents the algorithm from converging� toward a solution. The
HCF [7] is characterized by a pheromone update rule that limits the pheromone
values to the interval [0, 1]. This has some theoretical as well as practical implica-
tions. For example, an ACO algorithm that is implemented in the HCF is likely to
be more robust than a standard ACO algorithm.

One of the most important components of an ACO algorithm is the pheromone
model. For ACO_GSS we use a pheromone model, henceforth referred to as relation-
learning model. In this model, two operations oi and oj are called related if they
are either in the same group or if they have to be processed by the same ma-
chine. We denote the set of operations that are related to an operation oi by Ri .
Then, the relation-learning model consists of a pheromone trail parameter Tij and
a pheromone trail parameter Tji for each pair of related operations oi, oj ∈ O. The
value τij of pheromone trail parameter Tij encodes the desirability of processing
oi before oj , whereas the value τji of pheromone trail parameter Tji encodes the
desirability of processing oj before oi . As before, the set of all pheromone trail
parameters is denoted by T .

� In the course of this work we refer to convergence in the sense of stochastic convergence, see
also [37].

jmmas10.tex; 22/06/2004; 8:25; p.10

AN ANT COLONY OPTIMIZATION ALGORITHM 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

In the following we outline ACO_GSS. A high level description of this al-
gorithm is given in Algorithm 4. The data structures used by this algorithm, in
addition to counters and the already defined pheromone trails T , are:

– the iteration-best solution sib: the best solution generated in the current itera-
tion by the na ants;

– the best-so-far solution sbs: the best solution generated since the start of the
algorithm;

– the restart-best solution srb: the best solution generated since the last restart
of the algorithm;

– the convergence factor cf, 0 � cf � 1: a measure of how far the algorithm is
from convergence;

– the Boolean variable bs_update: it becomes true when the algorithm reaches
convergence.

A high level description of the algorithm is as follows (note that the main pro-
cedures are explained in detail later on). First, all the variables are initialized. In
particular, the pheromone values are set to the initial value 0.5 by the procedure
InitializePheromoneValues(T). Second, the na ants apply the ConstructSolution(T)

procedure to construct na solutions. These solutions are then improved by the appli-
cation of the ApplyLocalSearch(Siter) procedure. Third, the value of the variables
sib, srb and sbs is updated (note that, until the first restart of the algorithm, srb

represents the same solution as sbs). Fourth, pheromone trail values are updated
via the ApplyPheromoneUpdate(cf , bs_update,T , srb, sbs) procedure. Fifth, a new
value for the convergence factor cf is computed. Depending on this value, as well
as on the value of the Boolean variable bs_update, a decision on whether to restart
the algorithm or not is made. For the case where the algorithm is restarted, the
procedure ResetPheromoneValues(T) is applied and all the pheromones are reset
to their initial value (0.5). The algorithm is iterated until some opportunely defined
termination conditions are satisfied. Once terminated the algorithm returns the best-
so-far solution sbs. The components of that algorithm are outlined in more detail
below.

DetermineNumberOfAnts(P): After preliminary tests, the number of ants used
per iteration was set depending on the problem instance under consideration:

na ← max

{
10,

⌊ |O|
10

⌋}
. (8)

ConstructSolution(T): Each ant constructs a solution by using the list scheduler
algorithm that is explained in Algorithm 1. In order to fully define this algo-
rithm, it has to be specified how the functions Restrict(sp,Ot) and Choose(O ′

t)

are implemented.
The function Restrict(sp,Ot) may restrict set Ot , which contains the allowed

operations for extending the current partial solution sp, by means of candidate list
strategies. We considered three possibilities for implementing this function: (i) no

jmmas10.tex; 22/06/2004; 8:25; p.11

12 CHRISTIAN BLUM AND MICHAEL SAMPELS

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

ALGORITHM 4. ACO for the GSS problem (ACO_GSS)
input: A problem instance P of the GSS problem

sbs ← NULL, srb ← NULL, cf ← 0, bs_update ← FALSE

na ← DetermineNumberOfAnts(P)

InitializePheromoneValues(T)

while termination conditions not satisfied do
Siter ← ∅
for j = 1 to na do

Siter ← Siter ∪ ConstructSolution(T)

end for
ApplyLocalSearch(Siter)

sib ← argmin{Cmax(s) | s ∈ Siter}
EliteAction(sib)

Update(sib, srb, sbs)

ApplyPheromoneUpdate(cf , bs_update,T , srb, sbs)

cf ← ComputeConvergenceFactor(T)

if cf > 0.99 then
if bs_update = TRUE then

ResetPheromoneValues(T)

srb ← NULL

bs_update ← FALSE

else
bs_update ← TRUE

end if
end if

end while
output: sbs

restriction of set Ot at all (henceforth denoted by NR construction), (ii) restriction
of Ot by means of the GT mechanism as given in Algorithm 2 (henceforth denoted
by GT construction), and (iii) restriction of Ot by means of the ND mechanism as
given in Algorithm 3 (henceforth denoted by ND construction). In Section 5.2 we
experimentally determine the best choice.

Furthermore, in function Choose(O ′
t) an operation from set Ot

′ is chosen for
extending the current partial solution sp. This is done according to the follow-
ingtransition probabilities:

jmmas10.tex; 22/06/2004; 8:25; p.12

AN ANT COLONY OPTIMIZATION ALGORITHM 13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

p(oi | T) = minoj ∈Ri∩O+ τij · η(oi)
β∑

ok∈Ot
′ minoj ∈Rk∩O+ τkj · η(ok)β

, ∀oi ∈ Ot
′, (9)

where O+ is the set of operations that are not scheduled yet, and η(oi) denotes the
heuristic information for an operation oi , whose weight is adjusted by the parame-
ter β. After preliminary tests we used a setting of β = 10 for all our experiments.
In Section 5.2 we test eight different settings for the heuristic information.

ApplyLocalSearch(Siter): To every solution sj ∈ Siter a steepest descent local
search is applied. The neighborhood structure for this local search is N1c,GSS, as
introduced in Section 3.

EliteAction(sib): In every iteration, a short run (1
2 · |O| iterations) of a simple

TS, which is an extension of the above mentioned local search method, is applied
to the iteration-best solution sib. The tabu list, whose tenure we have set to 10,
ensures that moves cannot be reversed. This algorithmic component is especially
useful when the algorithm is applied to JSS instances, in which case it improves
the algorithm performance by 3% on average. When applied to OSS instances, this
algorithmic component does not contribute to the algorithm performance.

Update(sib, srb, sbs): This function updates solutions srb and sbs with the iter-
ation-best solution sib. srb is replaced by sib, if Cmax(sib) < Cmax(srb). The same
holds true for sbs.

ApplyPheromoneUpdate(cf , bs_update,T , srb, sbs): The typical schedule for
updating the pheromone values in MMAS algorithms in the HCF involves three
different solutions. These are sib, srb and sbs. Depending on the convergence fac-
tor cf , a weight is given to each of these solutions determining their influence on the
pheromone update. However, preliminary experiments showed that for OSS prob-
lem instances the influence of solution sib must be lower than for JSS instances.
The reason is the following. Given a solution s1 of an OSS problem instance, a so-
lution s2 is obtained by reversing every possible processing order. The makespans
of solutions s1 and s2 are the same. Therefore, if the weight of the iteration-best
solution sib is too high, each solution s1 competes with the solution s2, with re-
versed processing orders. This slows down the convergence speed of the algorithm
considerably. In order to avoid having to fine-tune the use of the iteration-best
solution sib, depending on the problem instance, we decided not to use the iteration-
best solution at all. Therefore, our approach uses only one solution s at any time,
which is either srb in the case bs_update = FALSE, or sbs otherwise, for updating
the pheromone values according to the following rule:

τij ← fmmas(τij + ρ · (δ(oi, oj , s) − τij)), (10)

where ρ ∈ [0, 1] is the evaporation rate. For all our experiments we chose the
setting of ρ = 0.1. Furthermore,

δ(oi, oj , s) =
{

1 if oi is to be processed before oj in s,
0 otherwise,

(11)

jmmas10.tex; 22/06/2004; 8:25; p.13

14 CHRISTIAN BLUM AND MICHAEL SAMPELS

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

and

fmmas(x) =
{

τmin if x < τmin,
x if τmin � x � τmax,
τmax if x > τmax.

(12)

We set the lower bound τmin for the pheromone values to 0.001 and the upper
bound τmax to 0.999. Therefore, after applying the pheromone update we set those
pheromone values that exceed the upper bound back to the upper bound value, and
for the lower bound respectively.

ComputeConvergenceFactor(T): To assess the “extent of being stuck” in an
area of the search space, after every iteration we compute the value of a so-called
convergence factor, cf . We compute this value in the following way:

cf = 2 ·
((∑

Tij ∈T max{τmax − τij , τij − τmin}
|T | · (τmax − τmin)

)
− 0.5

)
. (13)

When the algorithm is initialized (or restarted) with pheromone values all equal to
0.5, cf is 0.0 and when all pheromone values are either equal to τmin or equal to
τmax, cf is 1.0.

5. Experimental Evaluation

We first describe the problem instances that we have selected or generated for
the comparison. Then we show experimental results aimed at selecting one of
the possible ways of defining the heuristic information, and one of the possible
candidate list strategies for restricting the set of operations extending the current
partial solution in each construction step. The last part concerns the experimental
comparison of ACO_GSS to our adaptation of the TS by Nowicki and Smutnicki
[32] to GSS.

5.1. PROBLEM INSTANCES

We decided to apply our algorithm to real GSS, as well as to established OSS and
JSS benchmark instances. The only existing GSS instance, named whizzkids97,
was introduced in a mathematics competition at the TU Eindhoven, The Nether-
lands, in 1997 [39]. It consists of 197 operations, 15 machines, and 20 jobs that are
subpartitioned into 124 groups. Due to a lack of more GSS instances, we used well-
established JSS benchmark instances to generate additional GSS instances. One of
the most prominent JSS problem instances is the problem instance ft10, with 10
machines and 10 jobs. It was introduced in [31]. This problem had been open for
more than twenty years before the optimality of a solution (with quality 930) was
proven by Carlier and Pinson [11]. We chose the classical problem instance ft10,
and arbitrarily la38 (15 machines and 15 jobs) from the benchmark set proposed
in [27], and abz7 (15 machines and 20 jobs) from the benchmark set provided

jmmas10.tex; 22/06/2004; 8:25; p.14

AN ANT COLONY OPTIMIZATION ALGORITHM 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

in [1] to generate new benchmark instances in the following way: For the three
problems we refined the job partition into a group partition by subdividing each
Ji = oi

1 � · · · � oi
|Ji | into b groups of fixed length g = 1, . . . , 10 in the case

of ft10, and g = 1, . . . , 15 in the case of the two other problem instances (and
possibly one last group of shorter length):

{oi
1, . . . , o

i
g}, {oi

g+1, . . . , o
i
2g}, . . . , {oi

(b−1)g+1, . . . , o
i
|Ji |} (b = �|Ji |/g�).

This gives us a new benchmark set of 40 GSS instances in the range between
open shop scheduling and job shop scheduling.� We denote these instances by the
scheme 〈original_name〉_〈group_length〉. For example, the GSS instance derived
from ft10 with group length 3 is denoted by ft10_3.

Additionally, we also tested our algorithm on established JSS and OSS bench-
mark instances. For the JSS problem we chose another 13 problem instances;
among them the set of problem instances that is often called the 10 tough problems.
These are abz5 and abz6 (10 jobs, 10 machines), abz7, . . . , abz9 (20 jobs, 15
machines), la21, la24 (15 jobs, 10 machines), la25, la27, la29 (20 jobs, 10 ma-
chines), la38, la40 (15 jobs, 15 machines), orb08 and orb09 (10 jobs, 10 machines)
introduced in [2], and ft20 (20 jobs, 5 machines) introduced in [31]. For the OSS
problem, we applied our algorithm to the 10 biggest benchmark instances provided
by Taillard [38] (denoted by tai_20x20_∗; 20 jobs, 20 machines), to 8 of the biggest
instances provided by Brucker et al. [9] (denoted by j8∗; 8 jobs, 8 machines) and
to the 10 biggest instances by Guéret and Prins [23] (denoted by gp10-∗; 10 jobs,
10 machines). Note that the instances by Brucker et al., respectively by Guéret and
Prins are more difficult to solve than the Taillard instances. Altogether this makes
a sum of 82 problem instances.

5.2. PARAMETER SETTINGS OF ACO_GSS

In the following we experimentally determine the best setting of two parameters of
ACO_GSS’s solution construction mechanism: (1) The heuristic information that is
used for biasing the transition probabilities, and (2) the candidate list strategies that
are used to restrict the set of operations for extending the current partial solution.
First, we present the experiments that we conducted with the aim of selecting
heuristic information to bias the transition probabilities. In order to bias these
transition probabilities we use different dispatching rules, i.e., policies for the list
scheduler algorithm on which operation to select from the set O ′

t (see Section 2.2)
of operations that may be scheduled next. We tested 9 versions of ACO_GSS,
corresponding to the 8 different heuristics as shown in Table I (except for the
“Random” rule), plus one version that does not use any heuristic information at

� This benchmark set, as well as the other benchmark instances in the GSS input format, is
available for download at http://iridia.ulb.ac.be/∼cblum/gss/.

jmmas10.tex; 22/06/2004; 8:25; p.15

16 CHRISTIAN BLUM AND MICHAEL SAMPELS

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

all. As an example, for the EST rule we show how to translate it into the heuristic
information. In this case the heuristic information is defined by

η(oi) ←
1

tes(oi ,s
p)+1∑

ok∈Ot
′ 1

tes(ok,s
p)+1

, ∀oi ∈ Ot
′. (14)

Hereby, 1 is added to the earliest starting times in order to avoid division by 0.
For all 9 versions we set Ot ← Ot

′ (i.e., no candidate list strategies are used).
We applied the 9 versions of ACO_GSS – each 20 times with a time limit of
180 seconds – to the 10 GSS problem instances derived from the JSS instance
ft10. We present a rank-based analysis of the results in Table II(a). The rank of
an algorithm version (between 1 and 9) corresponds to its position in the ordered
list (decreasing order) of average solution qualities obtained by the 9 versions. The
results show that the best average rank is obtained by using the heuristic informa-
tion based on the EST dispatching rule. Another interesting observation is that the
algorithm that is not using any heuristic information at all was only beaten by the
algorithms that are using the EST heuristic, respectively the EFT heuristic. All the
other heuristics often misled ACO_GSS. A possible reason is that, in those cases
where these heuristics do not point the algorithm into the right direction, they are
rather harmful, whereas this does not seem to be the case for EFT and EST. With
respect to the obtained results, we chose the heuristic information that is based on
the EST dispatching rule for the final experimental evaluation of our algorithm.

The second open question after deciding on a version of heuristic information
is the choice of the candidate list strategy for restricting the set of operations for
extending the current partial solution in each construction step. As outlined in the
description of the construction mechanism, there are three different possibilities
that are denoted by NR, ND and GT. Instead of testing just these three possibilities,
we also tested all possible combinations of these candidate list strategies. A com-
bination of candidate list strategies is achieved when each ant, before it constructs
a solution, uniformly chooses one strategy at random from the set of allowed ones.
We applied the resulting 7 versions of ACO_GSS each 20 times with a time limit
of 180 seconds to the 10 GSS problem instances derived from the JSS instance
ft10. The rank-based results are shown in Table II(b). They show that the algorithm
version using a combination of ND and NR seems to outperform the other algorithm
versions. Therefore, we chose this candidate list strategy for our final experimental
evaluation.

5.3. RESULTS AND COMPARISON

We have compared the results obtained by ACO_GSS to our adaptation of the
TS approach by Nowicki and Smutnicki [32], which is one of the state-of-the-art
algorithms for the JSS problem. Our adaptation of this TS approach is obtained as
follows. First, we exchange the original neighborhood structure with our neighbor-
hood structure from Section 3. In this way the algorithm can be applied to all GSS

jmmas10.tex; 22/06/2004; 8:25; p.16

AN ANT COLONY OPTIMIZATION ALGORITHM 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

Table II. Tuning results

Ranks of the average solution qualities

Instance none EST EFT SPT LPT LWR MWR LTW MTW

ft10_1 2 1 3 5 9 7 4 6 8

ft10_2 3 2 1 5 9 7 4 6 8

ft10_3 2 1 3 5 7 8 4 6 9

ft10_4 3 1 2 5 7 9 4 6 8

ft10_5 3 1 2 5 7 9 4 6 8

ft10_6 3 1 2 4 6 9 5 7 8

ft10_7 3 1 2 4 6 9 5 7 8

ft10_8 3 1 2 5 6 9 4 7 8

ft10_9 2 1 3 6 5 9 4 7 8

ft10_10 1.5 1.5 3 6 5 9 4 7 8

Average rank 2.55 1.15 2.3 5.0 6.7 8.5 4.2 6.5 8.1

(a) Results for 9 versions of ACO_GSS that differ in the dispatching rule they use as heuristic
information. The numbers in the table show the rank of the average solution quality obtained per
problem instance for each algorithm version. For example, the algorithm version that uses the EFT
heuristic was the third-best among the 9 algorithm versions when applied to problem instance ft10_1.
The last row gives the average ranks obtained over all problem instances.

Ranks of the average solution qualities

Instance NR ND GT ND, NR GT, NR GT, ND GT, ND, NR

ft10_1 2 6 7 1 4 5 3

ft10_2 5 2 7 4 3 6 1

ft10_3 3 2 7 1 6 4 5

ft10_4 4 3 7 1 5 6 2

ft10_5 6 2 7 1 5 4 3

ft10_6 3 4 7 1 5 7 2

ft10_7 5 2 7 1 6 4 3

ft10_8 5 1 7 2 6 4 3

ft10_9 3.5 3.5 7 3.5 3.5 3.5 3.5

ft10_10 3.5 3.5 7 3.5 3.5 3.5 3.5

Average rank 4.0 2.9 7.0 1.9 4.7 4.7 2.9

(b) Results for 7 versions of ACO_GSS that differ in the candidate list strategy that is used for restrict-
ing the set of operations that can be used to extend the current partial solution at each construction
step. For each algorithm version, the numbers in the table show the rank of the average solution
quality obtained per problem instance. For example, the algorithm version that uses the NR strategy
is the second-best among all algorithm versions when applied to problem instance ft10_1. The last
row gives the average ranks obtained over all problem instances.

jmmas10.tex; 22/06/2004; 8:25; p.17

18 CHRISTIAN BLUM AND MICHAEL SAMPELS

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

instances. We did not implement the cycle detection mechanism. Furthermore, we
have made the number of allowed iterations without improvement dependent on
the tackled problem instance. This number is given by⌊

|O| ·
(

10 +
(

40 · 1 − (|J|/|G|)
1 − (|J|/|O|)

))⌋
, (15)

and is therefore highest for JSS instances and lowest for OSS instances (decreasing
in between). The reason is that the power of the ND algorithm (see Section 2.2) that
we use to construct the initial solutions is much higher for OSS instances than for
JSS instances. The setting as described above tries to exploit this fact. There is
one exception. After a hard restart (which happens when the list of elite solutions
is empty) the number of allowed iterations without improvement is twice as high
as usual. Finally, we also changed the stopping criteria, in the sense that a CPU
time limit is used to stop the algorithm. The resulting TS algorithm performs –
with respect to the computation time limits that we applied – about 5 to 10 hard
restarts when applied to JSS instances, and about 50 to 100 hard restarts when
applied to OSS instances. We henceforth refer to the above explained TS algorithm
as TS_GSS.

The results of ACO_GSS in comparison to TS_GSS are shown in Tables III
and IV. All the test results were obtained on PCs with AMD Athlon 1100 MHz
CPUs under Linux. The format of the result tables is as follows: In the first column
we indicate the problem instance. In the second column we give the best objective
function value known for the corresponding instance. If this value is denoted in
brackets, it means that it is not proven to be the optimal solution value. Further-
more, a left arrow (←) indicates that the best known solution value was improved
by ACO_GSS. Further, there are two times four columns to specify the results
of ACO_GSS and those of TS_GSS. In the first one of these four columns we
denote the value of the best solution found in 20 runs of the algorithm. The second
one gives the average of the values of the best solutions found in 20 runs. In the
third column we indicate the standard deviation of the average given in the second
column, and in column 4 we denote the average time that was needed to find the
best solutions of the 20 runs. Finally the last column of each table gives the time
limit for the algorithms. A value in a column listing the best solution values found
is indicated in bold, if the best value found by the other algorithm is worse. In
the case of ties we first use the average solution qualities to distinguish among the
algorithms, and if this cannot break the tie, we use the average computation times.
Furthermore, if the best known solution for an instance was found, the respective
value is marked by an asterisk.

The first instance in each section of Table III showing the results for our new
GSS benchmark instances is the original JSS instance (ft10, la38, resp. abz7). Then,
going down the list, the instances become closer and closer to OSS instances. The
last instance in each section is therefore the OSS version of the original JSS bench-
mark instance. First of all, we tested the statistical significance of the differences

jmmas10.tex; 22/06/2004; 8:25; p.18

AN ANT COLONY OPTIMIZATION ALGORITHM 19

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

Table III. Results for 41 GSS instances

Best ACO_GSS TS_GSS Time

Instance known Best Average
√

σ 2 t̄ Best Average
√

σ 2 t̄ limit

ft10_1 930 ∗930 938.899 7.608 93.489 ∗930 931.899 3.322 66.411 180 s
ft10_2 (872) 875 885.6 5.688 103.653 876 880.95 3.634 83.303 "
ft10_3 (827) 835 853.1 8.831 107.022 828 840.299 7.567 73.236 "
ft10_4 (782) 799 804 4.291 103.129 786 796.2 3.833 81.37 "
ft10_5 (745) 753 761.549 4.639 103.496 ∗745 754.35 4.451 90.429 "
ft10_6 (725) 726 734.45 5.491 97.808 727 731.7 3.341 89.149 "
ft10_7 (684) 694 700.7 5.722 82.23 ∗684 700.75 7.58 100.733 "
ft10_8 (655) ∗655 655.45 0.759 53.917 ∗655 657.95 1.731 87.132 "
ft10_9 (655) ∗655 655 0 1.375 ∗655 655 0 12.202 "
ft10_10 (655) ∗655 655 0 0.517 ∗655 655 0 0.627 "

la38_1 1196 1227 1235.45 4.173 928.019 ∗1196 1201.4 1.846 867.177 1800 s
la38_2 (1106) 1120 1144.3 11.304 1099.65 1109 1118.42 5.48 999.203 "
la38_3 (1049) 1058 1065.65 3.483 967.941 ∗1049 1057.45 5.443 1009.39 "
la38_4 (997) 1019 1029.55 5.306 1128.29 ∗997 1014.65 5.677 936.217 "
la38_5 (990) 1006 1018.9 6.866 1156.4 ∗990 1001.58 4.426 917.603 "
la38_6 (969) 975 984.299 5.516 958.52 ∗969 980.6 4.827 829.38 "
la38_7 (954) 967 978.799 5.425 1113.29 ∗954 965.421 5.047 1011.5 "
la38_8 (951) 957 968.75 5.495 1106.96 ∗951 959.25 3.753 956.895 "
la38_9 (957) 967 974.649 6.019 1158.81 ∗957 968.049 5.185 821.922 "
la38_10 (970) ∗970 984.649 5.896 1072.7 976 982.1 3.537 878.888 "
la38_11 (979) 981 985.85 3.528 1128.67 ∗979 984.684 3.972 976.034 "
la38_12 (946) ∗946 951.899 3.275 842.301 948 955.473 4.376 771.169 "
la38_13 (943) ∗943 943 0 40.499 ∗943 943 0 338.966 "
la38_14 (943) ∗943 943 0 14.335 ∗943 943 0 218.949 "
la38_15 (943) ∗943 943 0 7.2 ∗943 943 0 52.284 "

abz7_1 656 674 681.2 3.155 958.764 666 668.45 1.47 827.97 1800 s
abz7_2 (641) ∗641 645.399 2.891 814.112 ∗641 641 0 241.013 "
abz7_3 (612) ∗612 612.399 0.882 734.64 ∗612 612 0 112.837 "
abz7_4 (609) ∗609 609 0 96.472 ∗609 609 0 84.519 "
abz7_5 (638) ∗638 638 0 6.916 ∗638 638.049 0.223 88.302 "
abz7_6 (600) ∗600 600 0 36.448 ∗600 600 0 121.834 "
abz7_7 (567) ∗567 569 2.752 939.733 ∗567 569.85 1.598 959.039 "
abz7_8 (577) ∗577 577 0 58.301 ∗577 577 0 206.838 "
abz7_9 (577) ∗577 577 0 35.159 ∗577 577 0 404.748 "
abz7_10 (612) ∗612 612 0 14.237 ∗612 612.6 0.994 814.93 "
abz7_11 (610) ∗610 610 0 4.246 ∗610 611.75 5.408 221.62 "
abz7_12 (592) ∗592 592 0 4.81 ∗592 592.399 1.788 75.058 "
abz7_13 (581) ∗581 581 0 9.173 ∗581 581.1 0.307 256.19 "
abz7_14 (562) ∗562 562 0 8.991 ∗562 562.149 0.67 131.104 "
abz7_15 (556) ∗556 556 0 3.728 ∗556 556 0 0.491 "

whizzkids97 469 486 495.149 5.06 1117.55 475 482.75 2.953 806.125 1800 s

jmmas10.tex; 22/06/2004; 8:25; p.19

20 CHRISTIAN BLUM AND MICHAEL SAMPELS

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

between the two algorithms by means of a two-sided Wilcoxon rank sum test [13]
for every GSS problem instance. Except for the abz7_∗ instances (∗ > 2) for most
other GSS instances we could reject the hypothesis that the two algorithms behave
equally, in favor of the hypothesis that they behave differently with a confidence
level of 0.95 (p-value < 0.05). The results show that TS_GSS has advantages for
more JSS-like instances, whereas ACO_GSS has advantages for more OSS-like

Table IV. Results for existing OSS and JSS benchmark instances

Best ACO_GSS TS_GSS Time

Instance known Best Average
√

σ 2 t̄ Best Average
√

σ 2 t̄ limit

tai_20x20_1 1155 ∗1155 1156.85 1.424 197.4 1156 1165.05 4.773 193.977 400 s

tai_20x20_2 1241 1243 1247.6 2.37 184.729 1253 1258.15 3.013 148.349 "

tai_20x20_3 1257 ∗1257 1257.35 0.587 164.762 1258 1262.6 2.835 121.819 "

tai_20x20_4 1248 ∗1248 1248.1 0.307 121.766 ∗1248 1251.15 2.56 76.846 "

tai_20x20_5 1256 ∗1256 1256.35 0.587 196.013 1257 1262.45 3.363 135.449 "

tai_20x20_6 1204 ∗1204 1205.15 0.933 195.919 1205 1211.1 4.089 151.525 "

tai_20x20_7 1294 1295 1298.2 2.041 246.233 1300 1308.2 3.994 207.826 "

tai_20x20_8 1169 1173 1178.85 2.777 191.633 1181 1188.75 5.418 69.906 "

tai_20x20_9 1289 ∗1289 1289.05 0.223 133.724 ∗1289 1293.5 3.9 69.938 "

tai_20x20_10 1241 ∗1241 1241.1 0.307 81.916 ∗1241 1245.05 3.252 91.478 "

j8-per0-1 (1071) ← ∗1071 1075.35 3.842 338.964 1077 1087.9 5.23 372.327 640 s

j8-per0-2 (1062) ← ∗1062 1072.85 6.054 367.7 1073 1091.1 9.095 336.37 "

j8-per10-0 (1033) ← ∗1033 1046.15 4.704 300.803 1052 1061.45 6.924 300.024 "

j8-per10-1 (1017) ← ∗1017 1024.7 3.262 301.435 1025 1038.6 6.064 223.585 "

j8-per10-2 (1020) ← ∗1020 1027.9 4.789 292.358 1021 1043.95 8.159 266.27 "

j8-per20-0 1000 1003 1010.1 2.826 301.759 1011 1017.25 3.668 291.589 "

j8-per20-1 1000 ∗1000 1000 0 50.613 ∗1000 1000.2 0.695 230.703 "

j8-per20-2 (1001) ← ∗1001 1007.55 3.136 256.897 1007 1018.05 5.031 233.673 "

gp10-01 (1108) ← ∗1108 1112.75 3.416 531.083 1118 1139.6 9.794 485.971 1000 s

gp10-02 (1101) ← ∗1101 1113.65 6.523 347.108 1120 1135.75 12.539 484.678 "

gp10-03 (1096) ← ∗1096 1102.5 3.203 561.317 1121 1132.05 6.286 472.247 "

gp10-04 (1083) ← ∗1083 1092 3.699 492.382 1100 1113.7 8.885 450.235 "

gp10-05 (1091) ← ∗1091 1096.2 3.994 486.612 1104 1121.65 9.365 426.275 "

gp10-06 (1071) ← ∗1071 1077.35 10.059 613.248 1115 1132.5 11.274 579.763 "

gp10-07 (1081) ← ∗1081 1082.8 3.286 692.913 1089 1120.9 15.66 459.557 "

gp10-08 (1096) ← ∗1096 1102 3.906 537.129 1115 1134.5 11.362 425.141 "

gp10-09 (1121) 1124 1129.7 3.419 608.052 1132 1150.45 9.11 467.763 "

gp10-10 (1092) ← ∗1092 1095.15 2.368 543.205 1123 1144.35 9.258 456.75 "

(a) Results for 28 of the largest OSS benchmark instances

jmmas10.tex; 22/06/2004; 8:25; p.20

AN ANT COLONY OPTIMIZATION ALGORITHM 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

Table IV. (Continued)

Best ACO_GSS TS_GSS Time

Instance known Best Average
√

σ 2 t̄ Best Average
√

σ 2 t̄ limit

abz7 656 674 681.2 3.155 958.764 666 668.45 1.47 827.97 1800 s

abz8 (669) 689 697.049 3.235 1093.25 673 679.95 3.17 794.02 "

abz9 (679) 702 709.35 4.158 1059.21 688 692.2 2.607 632.092 "

la21 1046 1047 1053.25 3.507 460.265 1047 1049.25 2.048 368.105 900 s

la24 935 944 948.1 3.385 363.611 939 942.299 1.38 311.956 "

la25 977 ∗977 981.45 2.981 894.611 ∗977 977.299 0.47 676.827 1800 s

la27 1235 1243 1255.5 5.898 1031.74 ∗1235 1241.15 3.688 895.972 "

la29 (1152) 1168 1186.75 8.149 1084.98 1164 1168.1 2.174 822.03 "

la38 1196 1227 1235.45 4.173 928.019 ∗1196 1201.4 1.846 867.177 "

la40 1222 1228 1234.55 5.915 1031.1 1224 1228.35 2.518 711.315 "

ft10 930 ∗930 938.899 7.608 93.489 ∗930 931.899 3.322 66.411 180 s

ft20 1165 ∗1165 1168.55 5.114 88.283 ∗1165 1165 0 22.501 "

orb08 899 ∗899 914.649 6.869 88.263 ∗899 910.75 6.331 70.376 "

orb09 934 ∗934 935.149 2.924 80.496 ∗934 934 0 27.816 "

abz5 1234 ∗1234 1237.2 1.361 34.177 ∗1234 1236.9 1.372 54.466 "

abz6 943 947 947.799 0.41 15.369 ∗943 943.7 0.978 61.444 "

(b) Results for 16 JSS benchmark instances

instances. This is not just true for the solution qualities obtained, but also for the
average computation times needed. ACO_GSS finds the best solutions of a run
more quickly for more OSS-like instances, and vice versa. Furthermore, the same
observation can be made for the standard deviation of the average solution qualities
obtained. TS_GSS does not just find better solutions for JSS-like instances, but
is usually also characterized by a lower standard deviation of the best solution
values found over 20 runs. In turn, the same holds for ACO_GSS for more OSS-
like instances. The difficult whizzkids97 instance is on 197 operations and 124
groups. This means that it is quite close to a JSS instance. Consequently, TS_GSS
performs better. Both approaches find the optimal solution value (930) for the ft10
JSS instance, and TS_GSS also finds the optimal solution (1196) for the difficult
la38 JSS instance.

Table IV(a) shows the results obtained by the two approaches for the biggest
OSS benchmark instances that exist (see Section 5.1). The results confirm the
impression that was given by the results for the GSS instances. For OSS instances,
ACO_GSS is by all means clearly superior to TS_GSS. This is more obvious for
the benchmark instances by Brucker et al. and those by Guéret and Prins than for
the benchmark instances by Taillard, which are relatively easy to solve. ACO_GSS

jmmas10.tex; 22/06/2004; 8:25; p.21

22 CHRISTIAN BLUM AND MICHAEL SAMPELS

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

is usually better in the best solution values found, in average solution qualities
obtained, in standard deviation of the best solution values obtained, and generally
also in the average time needed to find the best solutions. The results of TS_GSS
confirm that algorithms that reach state-of-the-art performance for a certain prob-
lem cannot, in general, be adapted to other problems in such a way that they remain
highly functional.

ACO_GSS is able to improve the best known solution values for 6 of the 8
instances by Brucker et al., and for 9 of the 10 instances by Guéret and Prins.� The
only algorithm that was applied to these instances before is the EC algorithm by
Prins [34]. That ACO_GSS beats this algorithm so clearly is remarkable, because in
contrast to this EC algorithm ACO_GSS is not specialized to solve OSS instances.

Finally, Table IV(b) shows the results of ACO_GSS in comparison to TS_GSS
for the “10 tough problems” from the JSS literature, as well as 6 easier (smaller)
JSS instances. Observing the results, it becomes clear that TS_GSS in general
has obvious advantages over the ACO approach when applied to JSS problem
instances. This especially holds for the bigger problem instances. This result is not
surprising as the JSS version of TS_GSS is one of the state-of-the-art algorithms
for JSS. However, ACO_GSS is the first ACO approach that obtains an acceptable
performance for JSS instances. This is documented by the fact that it is the first
ACO algorithm that finds the solution of the ft10 instance by Fisher and Thompson,
which for a long time was the ultimate challenge for JSS algorithms.

6. Conclusions

We have proposed an ant colony optimization approach to tackle the broad class
of group shop scheduling problem instances. Our approach is a MAX-MIN ant
system in the hyper-cube framework. It probabilistically constructs solutions using
the ND algorithm. Furthermore, it employs black-box local search procedures for
improving the constructed solutions. These local search procedures are based on a
new neighborhood for the group shop scheduling problem. This neighborhood is an
adaptation of the successful neighborhood derived by Nowicki and Smutnicki for
the JSS problem. After fine-tuning the construction mechanism of our ant colony
optimization approach, we did an experimental evaluation of our new method and
compared the results to an adaptation of the successful tabu search approach by
Nowicki and Smutnicki to GSS. The results showed that ACO_GSS is especially
suited to the application in OSS instances. We were able to improve the best known
solution value for 15 of the 28 tested OSS instances. This is remarkable as our al-
gorithm is not specialized in solving OSS problem instances. Also the performance
of our ant colony optimization approach is acceptable for JSS problem instances.

� Note that a new state-of-the-art algorithm for OSS has recently been accepted for publication
(see [6]). This algorithm further improves 10 of the 15 best known solutions that are improved by
our algorithm.

jmmas10.tex; 22/06/2004; 8:25; p.22

AN ANT COLONY OPTIMIZATION ALGORITHM 23

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

In particular, it is the first ant colony optimization approach that can solve the ft10
instance by Fischer and Thompson.

References

1. Adams, J., Balas, E. and Zawack, D.: The shifting bottleneck procedure for job shop scheduling,
Management Sci. 34(3) (1988), 391–401.

2. Applegate, D. and Cook, W.: A computational study of the job-shop scheduling problem, ORSA
J. Comput. 3 (1991), 149–156.

3. Balas, E. and Vazacopoulos, A.: Guided local search with shifting bottleneck for job shop
scheduling, Management Sci. 44(2) (1998), 262–275.

4. Blaz̀ewicz, J., Domschke, W. and Pesch, E.: The job shop scheduling problem: Conventional
and new solution techniques, European J. Oper. Res. 93 (1996), 1–33.

5. Blum, C.: AGO applied to group shop scheduling: A case study on intensification and diversifi-
cation, in M. Dorigo, G. Di Caro and M. Sampels (eds), Proceedings of ANTS 2002 – From Ant
Colonies to Artificial Ants: Third International Workshop on Ant Algorithms, Lecture Notes in
Comput. Sci. 2463, Springer Verlag, Berlin, 2002, pp. 14–27.

6. Blum, C.: Beam-ACO – Hybridizing ant colony optimization with beam search: An application
to open shop scheduling, Comput. Oper. Res. (2004), in press.

7. Blum, C. and Dorigo, M.: The hyper-cube framework for ant colony optimization, IEEE Trans.
Systems Man Cybernet. – Part B 34(2) (2004), 1161–1172.

8. Brinkkötter, W. and Brucker, P.: Solving open benchmark problems for the job shop problem,
J. Scheduling 4 (2001), 53–64.

9. Brucker, P., Hurink, J., Jurisch, B. and Wostmann, B.: A branch & bound algorithm for the
open-shop problem, Discrete Appl. Math. 76 (1997), 43–59.

10. Brucker, P., Jurisch, B. and Sievers, B.: A branch and bound algorithm for the job-shop
scheduling problem, Discrete Appl. Math. 49 (1994), 109–127.

11. Carlier, J. and Pinson, E.: An algorithm for solving the job-shop problem, Management Sci.
35(2) (1989), 164–176.

12. Colorni, A., Dorigo, M., Maniezzo, V. and Trubian, M.: Ant system for job-shop scheduling,
JORBEL – Belgian J. Oper. Res., Statist. Comput. Sci. 34(1) (1994), 39–53.

13. Conover, W.: Practical Nonparametric Statistics, Wiley Series in Probability and Statistics,
Wiley, New York, NY, 1999.

14. Dell’Amico, M. and Trubian, M.: Applying tabu search to the job-shop scheduling problem,
Ann. Oper. Res. 41 (1993), 231–252.

15. den Besten, M. L., Stützle, T. and Dorigo, M.: Design of iterated local search algorithms: An
example application to the single machine total weighted tardiness problem, in E. J. W. Boers,
J. Gottlieb, P. L. Lanzi, R. E. Smith, S. Cagnoni, E. Hart, G. R. Raidl and H. Tijink (eds),
Applications of Evolutionary Computing: Proceedings of EvoWorkshops 2001, Lecture Notes
in Comput. Sci. 2037, Springer Verlag, Berlin, 2001, pp. 441–452.

16. Dorigo, M. and Di Caro, G.: The ant colony optimization meta-heuristic, in D. Corne,
M. Dorigo and F. Glover (eds), New Ideas in Optimization, McGraw-Hill, London, 1999,
pp. 11–32.

17. Dorigo, M., Maniezzo, V. and Colorni, A.: Ant system: Optimization by a colony of cooperating
agents, IEEE Trans. Systems Man Cybernet. – Part B 26(1) (1996), 29–41.

18. Dorndorf, U. and Pesch, E.: Evolution based learning in a job shop scheduling environment,
Comput. Oper. Res. 22 (1995), 25–40.

19. Dorndorf, U., Pesch, E. and Phan-Huy, T.: Solving the open shop scheduling problem,
J. Scheduling 4(3) (2001), 157–174.

jmmas10.tex; 22/06/2004; 8:25; p.23

24 CHRISTIAN BLUM AND MICHAEL SAMPELS

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

20. Dorndorf, U., Pesch, E. and Phan-Huy, T.: Constraint propagation and problem decomposition:
A preprocessing procedure for the job shop problem, Ann. Oper. Res. 115(1) (2002), 125–145.

21. Fang, H.-L., Ross, P. and Corne, D.: A promising genetic algorithm approach to job-shop
scheduling, rescheduling, and open-shop scheduling problems, in Proceedings of the Fifth
International Conference on Genetic Algorithms (ICGA ’93), Morgan Kaufmann Publishers,
San Mateo, CA, 1993, pp. 375–382.

22. Giffler, B. and Thompson, G. L.: Algorithms for solving production scheduling problems, Oper.
Res. 8 (1960), 487–503.

23. Guéret, C. and Prins, C.: A new lower bound for the open-shop problem, Ann. Oper. Res. 92
(1999), 165–183.

24. Haupt, R.: A survey of priority rule-based scheduling, OR Spektrum 11 (1989), 3–16.
25. Ikeda, K. and Kobayashi, S.: GA based on the UV-structure hypothesis and its application to

JSP, in Proceedings of PPSN-VI, Sixth International Conference on Parallel Problem Solving
from Nature, Springer-Verlag, Berlin, 2000, pp. 273–282.

26. Jain, A. and Meeran, S.: Deterministic job-shop scheduling; past, present and future, European
J. Oper. Res. 113(2) (1999).

27. Lawrence, S.: Resource constraint project scheduling: An experimental investigation of heuris-
tic scheduling techniques (Supplement), Technical Report, Graduate School of Industrial
Administration, Carnegie Mellon University, Pittsburgh, USA, 1984.

28. Liaw, C.-F.: A tabu search algorithm for the open shop scheduling problem, Comput. Oper. Res.
26 (1999), 109–126.

29. Liaw, C.-F.: A hybrid genetic algorithm for the open shop scheduling problem, European J.
Oper. Res. 124 (2000), 28–42.

30. Merkle, D., Middendorf, M. and Schmeck, H.: Ant colony optimization for resource-
constrained project scheduling, IEEE Trans. Evol. Comput. 6(4) (2002), 333–346.

31. Muth, J. F. and Thompson, G. L.: Industrial Scheduling, Prentice-Hall, Englewood Cliffs, NJ,
1963.

32. Nowicki, E. and Smutnicki, C.: A fast taboo search algorithm for the job-shop problem,
Management Sci. 42(2) (1996), 797–813.

33. Pfahringer, B.: A multi-agent approach to open shop scheduling: Adapting the ant-Q formal-
ism, Technical Report TR-96-09, Österreichisches Forschungsinstitut für Artificial Intelligence,
Wien, Austria, 1996.

34. Prins, C.: Competitive genetic algorithms for the open-shop scheduling problem, Math.
Methods Oper. Res. 52(3) (2000), 389–411.

35. Roy, B. and Sussmann, B.: Les problémes d’ordonnancement avec constraints dijonctives,
Technical Report Note DS 9 bis, SEMA, Paris, France, 1964.

36. Stützle, T.: An ant approach to the flow shop problem, in Fifth European Congress on Intelligent
Techniques and Soft Computing, EUFIT’98, 1998, pp. 1560–1564.

37. Stützle, T. and Hoos, H. H.: MAX-MIN ant system, Future Generation Computer Systems
16(8) (2000), 889–914.

38. Taillard, É. D.: Benchmarks for basic scheduling problems, European J. Oper. Res. 64 (1993),
278–285.

39. Whizzkids: http://www.win.tue.nl/whizzkids/1997.
40. Yamada, T. and Nakano, R.: Job-shop scheduling by simulated annealing combined with deter-

ministic local search, in Meta-Heuristics: Theory & Applications, Kluwer Acad. Publ., Boston,
MA, 1996, pp. 237–248.

jmmas10.tex; 22/06/2004; 8:25; p.24

