
An application of Iterated Local Search

to Graph Coloring

Marco Chiarandini and Thomas Stützle
Fachgebiet Intellektik, Fachbereich Informatik

Technische Universität Darmstadt, Darmstadt, Germany
{machud,stuetzle}@intellektik.informatik.tu-darmstadt.de

Abstract

Graph coloring is a well known problem from graph theory that, when solving it with
local search algorithms, is typically treated as a series of constraint satisfaction problems:
for a given number of colors k, one has to find a feasible coloring; once such a coloring is
found, the number of colors is decreased and the local search starts again. In this article
we explore the application of Iterated Local Search to the graph coloring problem. Iterated
Local Search is a simple, yet powerful, metaheuristic that has shown very good results for
a variety of optimization problems. In our research we investigate different perturbation
schemes and present computational results on some hard instances from the DIMACS
benchmark suite.

1 Introduction

The Graph Coloring Problem (GCP) is a well known combinatorial problem defined as follows:
given a directed graph G = (V,E), where V is the set of |V | = n vertices and E ⊆ V ×V is the
set of edges, and an integer k (number of colors), find a mapping Ψ : V 7→ 1, 2, ..., k such that
for each [u, v] ∈ E we have Ψ(v) 6= Ψ(u). In fact, this problem statement corresponds to the
decision version, where we look for a solution that satisfies all constraints. In the optimization
counterpart, the GCP consist of finding the minimum k satisfying the constraints. Such k is
called the chromatic number of G and is denoted by χG.

The GCP is an interesting problem for theory and practice. In fact, several classes of real-
life problems such as examination timetabling [3] and frequency assignment [4] can be modeled
as GCP extensions. Yet, it cannot be expected that an algorithm can find, in polynomial time,
a solution to an arbitrary GCP instance, because the GCP is NP-hard [15]. In fact, exact
algorithms can solve only small size instances [22]. For larger instances approximate algorithms
have to be used and a large number of such algorithms has been proposed [10, 14, 16, 17, 20].

In this work we explore the application of Iterated Local Search (ILS) [21] to the GCP. ILS
consists in the iterative application of a local search procedure to initial solutions obtained by
modifying some previous local optima. The optimization variant of GCP can be stated as a
sequence of constraint satisfaction problems, where k is being decremented sequentially by one
until no admissible mapping exists, meaning that χG = k + 1. In this case, the problem is
solved by ILS as a constraint satisfaction problem.

The article is structured as follows. Section 2 presents a review of approximation algorithms
for the GCP and show which one we use. Section 3 introduces available benchmark sets.
Section 4 presents ILS and describes some details of the ILS implementation for the GCP.
Section 5 gives experimental results. Conclusions are presented in Section 6.

1

2 Approximate algorithms for graph coloring

Approximate algorithms for the GCP fall into two main classes, construction heuristics and
local search algorithms.

Construction heuristics start from an empty solution and successively augment a partial
coloring until the full graph is colored. During the solution construction these algorithms
maintain feasibility, that is, they return a conflict free coloring. Well known construction
heuristics are the Brelaz heuristic [2] and the Recursive Largest First (RLF) heuristic [20] or
iterated, randomized construction heuristics like the Iterated Greedy algorithm [6].

Local search for the GCP starts with some initial, infeasible color assignment and iteratively
moves to neighboring solutions, trying to reduce the number of conflicts until a feasible solution
is found or a stopping criterion is met. Two vertices i, j are in conflict, if they are connected
by an edge and both are assigned the same color. Local search applied to the GCP iteratively
tries to repair the current color assignment guided by an evaluation function that counts the
total number of conflicts. In case a candidate solution with zero conflicts is encountered, this
candidate solution corresponds to a feasible coloring of the graph.

Often, in articles, only results for obtaining an a priori determined number of colors are
given, that is, the number of colors is fixed and the constraint satisfaction problem solved. The
number of colors chosen a priori often corresponds to a very good one. But in real applications,
one can not solve the GCP by first guessing a very good coloring and then running the algorithm;
rather, one determines a good initial feasible coloring and then tries to reduce the number of
colors. In our work we follow this latter approach. In particular, we can distinguish three
different phases in which an algorithms from one of the two classes, previously introduced, is
applied:

• Initialization phase: the exact coloring algorithm implemented by Trick1 [22] based on
DSATUR [2] is used to construct an initial coloring. We stop the algorithm when coloring
the graph with a lower number of colors becomes difficult (in the sense of CPU time
required). The output of this phase is a feasible coloring.

• Color number decreasing phase: once DSATUR or local search (described in the next
point) provided a feasible coloring, one color is removed and the vertices that were assigned
to the removed color are reassigned to another available color with the dsat heuristic which
colors first the vertex most constrained, i.e. the vertex with the highest number of different
colors used in its neighborhood (ties are broken in favor of the highest vertex degree, that
is, the number of incident edges) [2].

• Local Search phase: it takes place when the coloring returned by the decreasing phase is
not feasible; local search based algorithms are used for finding a feasible coloring. In this
sense local search is used for solving the decision version of the problem.

The whole procedure ends when local search is not able to solve feasibility for the given
number of colors.

The main aim of this work is to improve the local search phase. In the simplest case, local
search algorithms accept only improving moves and they terminate in local optima. Meta-
heuristics are techniques which are intended to avoid the disadvantages of early termination in
local optima. Among the first metaheuristic approaches to the GCP were Simulated Anneal-
ing implementations. Simulated Annealing was first applied to the GCP by Chams et al. [5]
and was intensively tested by Johnson et al. [17] on random graphs. Among the most widely
applied metaheuristics to the GCP are Tabu Search algorithms. The first implementations of
Tabu Search are due to Hertz and de Werra [16]. The best peak performance is apparently
obtained by the variant proposed by Hao and Dorne [8, 14]. Solving the GCP by Evolutionary

1Available via http://mat.gsia.cmu.edu/COLOR/color.html, June 2002

2

Algorithms was proposed by Davis [7], who reported several crossover operators combined with
several ordering of vertices. Eiben et al. [9] applied an Adaptive Evolutionary Algorithm to the
GCP; this algorithm changes periodically the evaluation function to avoid local optima. More
recently, Laguna and Mart́ı [19] proposed an application of GRASP to the GCP and presen-
ted good results for sparse graphs. Finally, several hybrid approaches were proposed. These
typically combine Evolutionary Algorithms with Tabu Search implementations. The first such
approach for the GCP was proposed by Fleurent and Ferland [11, 12] and the currently most
performing of these approaches seems to be the one of Galinier and Hao [13]. The first applica-
tion of Iterated Local Search to the graph coloring is that of Paquete and Stützle [25], for which
interesting performance results were obtained, though significant room for further investigation
remains.

3 Benchmark Problems

We tested our approaches on some of the benchmark instances proposed for the Symposium at
http://mat.gsia.cmu.edu/COLOR02. We first divided the instances into two groups: those
which are solved to optimum by the DSATUR algorithm in less than 8 seconds on our machine,
a Pentium III 700 MHz processor with 256 KB cache and 512 MB RAM, and those for which the
DSATUR algorithm requires longer time. We then divided this latter group in three sub-groups:
(i) the instances for which the exact optimum is known, (ii) the instances for which the optimum
is not known and (iii) the instances which are of large size (more than 1000 vertices). A table
with this classification is given in Appendix. For the experimental analysis of our algorithms
we took a sample from the first and the second group while in the Appendix results also for
instances of the third group are reported. More specifically we used the following graphs:

• Random graphs. These are instances from Johnson [17] in which for a given set of vertices
the graph is obtained by including each possible edge [u, v] with a probability p for each
pair. The chromatic number for these instances is unknown.

• Leighton graphs. These are structured graphs generated by a procedure that uses the
number of vertices, the desired chromatic number, the average vertex degree and a random
vector of integers to generate a certain number of cliques [20]. The chromatic number of
these instances is known.

• Queen graphs. Given an n × n chess board, a queen graph is a graph with n2 vertices,
each corresponding to a square of the board. Two vertices are connected by an edge if the
corresponding squares are in the same row, column or diagonal. The chromatic number
is not always known, but since the maximum clique in the graph is no more than n the
chromatic number is not less than n.

• Full Insertion graphs. These are obtained by a generalization of Mycielski transforma-
tion [24] with inserted vertices to increase graph size but not density.

• Latin square graphs. These are derived from the problem of completing Latin Squares.

4 Iterated Local Search for coloring graphs

The essence of ILS [1, 26] is to build a biased randomized walk in the space of the local optima
(local optima with respect to some local search algorithm). This walk is built by iteratively
perturbing a locally optimal solution, next applying a local search algorithm to obtain a new
locally optimal solution, and finally using an acceptance criterion for deciding from which of
these solutions to continue the search. The perturbation must be sufficiently strong to allow

3

procedure Iterated Local Search
s0 = GenerateInitialSolution()
s = LocalSearch(s0)
repeat

s′ = Perturbation(s, history)
s′′ = LocalSearch(s′)
s = AcceptanceCriterion(s, s′′, history)

until termination condition met
end

Figure 1: Pseudocode of an iterated local search procedure.

the local search to effectively escape from local optima and to explore different solutions, but
also weak enough to prevent the algorithm from reducing to a simple random restart algorithm,
which is known to typically perform poorly. ILS is appealing both for its simplicity and for the
very good results it provided, for example, in the Traveling Salesman Problem [18] or Scheduling
Problems [21].

To apply an ILS algorithm, four components have to be specified. These are a procedure
GenerateInitialSolution() that generates an initial solution s0, a procedure Perturbation, that modi-
fies the current solution s leading to some intermediate solution s′, a procedure LocalSearch that
returns an improved solution s′′, and an AcceptanceCriterion that decides to which solution the
next perturbation is applied. An algorithmic scheme for ILS is given in Figure 1.

In principle, any local search algorithm can be used, but the performance of the ILS al-
gorithm with respect to solution quality and computation speed depends strongly on the one
chosen. An iterated descent algorithm is often used, but it is also possible to apply more
sophisticated local search algorithms like Tabu Search, as we do in our case.

The perturbation mechanism should be chosen strong enough to allow to leave the current
local optimum and to allow the local search to explore different solutions. At the same time,
the modification should be weak enough to keep enough characteristics of the current local
optimum.

The procedure AcceptanceCriterion is used to decide from which solution the search is con-
tinued by applying the next perturbation. One important aspect of the acceptance criterion
and the perturbation is to introduce a bias between intensification and diversification of the
search. Intensification of the search around the best found solution is achieved, for example,
by applying the perturbation always to the best found solution and using small perturbations.
Diversification is achieved, in the extreme case, by accepting every new solution s′′ and applying
large perturbations.

4.1 Iterated Local Search operators

4.1.1 Local Search

The commonly used neighborhood when treating the GCP as a decision problem is the 1-opt
neighborhood that in each step changes the color assignment of exactly one vertex. For searching
the 1-opt neighborhood, two different local search architectures are commonly applied.

1. The first one is based on the min-conflicts heuristic, which was proposed to solve constraint
satisfaction problems of which graph coloring is a particular case. In each local search
step, a vertex that is in conflict is chosen at random; then the color that minimizes the
number of conflicts [23] is assigned to this vertex [23].

2. The second scheme examines all possible combinations of vertices and colors (i, c), where
i is a vertex and c is a color, to discover the maximal reduction of the number of conflicts;
if several such pairs i, c exist, one is chosen randomly [8, 10]. In [8] this neighborhood is

4

further reduced by considering only moves that affect vertices that are currently involved
in a conflict.

The second architecture is greedier than the first, because at each step a larger set of
candidate moves is examined. Since a straightforward implementation of a local search using
the second neighborhood examination scheme is quite costly, we speed-up the neighborhood
evaluation by means of a two-dimensional table T of size n · k, where each entry ti,j stores the
effect on the evaluation function incurred by changing the color of vertex i to color j. Each
time a move is performed, only the part of the table that is affected by the move is updated.
This table has to be initialized in O(n2 · k), but each update of the matrix then only takes
O(n · k) in the worst case (for sparse graphs the update is much faster) [12].

In addition to this we enhanced both local search architectures with the use of a Tabu
Search metaheuristic in order to avoid to get stucked in a local optimum. For the setting of
the tabu list length we adopted two different schemes as suggested in the respective literature.
Thus for the first local search architecture we used a fixed value, named tabu length (tl), and
keep it as the parameter to tune; for the second architecture we followed, instead, a dynamic
scheme [8, 14] where the length of tabu list is taken as Random(A) + δ × |nc|, with nc the set
of conflicting vertices and δ a parameter to tune.

Our stopping criterion is the maximum number of iterations without improvement for the
lowest number of constraint violations between vertices reached so far. More specifically, this
number of maximum iteration is given by |V |×k×fend where fend is a parameter to be decided.

4.1.2 Perturbation

The main part of our research concerns the examination of different ways of perturbing solutions.
Here, we considered three different possibilities:

P1, directed diversification: we perform piter moves using the Tabu Search procedure with
long tabu list settings and mix this strategy with random moves: At each step a random
choice is made whether we execute a random search step (such a step is done with a
probability wp) or a Tabu Search step (with probability 1-wp).

P2, random recoloring: a certain number of colors is removed and vertices are recolored
with a randomly chosen color different from the one they had previously.

P3, dsat recoloring: we use the same type of perturbation as in the random recoloring
except that the recoloring of the vertices affected directly by the perturbation is done
using the dsat heuristic.

The first kind of perturbation was already studied in [25] were it performed when compared
to three other schemes which were (i) to assign to some vertices randomly chosen colors, (ii) to
add a certain number of edges during some number of iterations, leading to a modification of
the instance definition, and (iii) to assign randomly chosen colors to vertices that are in conflict.

Let us note that for all the perturbations the modifications introduced by the solution
perturbation are recorded in the tabu list to prevent the search to immediately undo the per-
turbation.

4.1.3 Initial solution

As stated in Section 2, the initial solution is the solution provided by DSATUR (with a CPU
time limit of 8 seconds on our machine). The number of colors is then reduced by one and the
vertices that were assigned to the removed color are recolored with the dsat heuristic. This
decreasing procedure ends when the coloring becomes infeasible.

5

4.1.4 Acceptance criterion

The acceptance criterion uses one of the following rules: accept every new solution or always
apply the perturbation to the best solution found so far in the search. This corresponds to a
strategy for the diversification and the intensification of the search, respectively.

5 Experimental results

5.1 Local search

In a preliminary analysis we compare the two local search architectures. In Table 1 we show
the results obtained by using only the two different local searches extended by the Tabu Search.
For each instance, values of tl ∈ {1, 2, 3, 4, 5} and of δ ∈ {0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5} were
tested, while as stopping criterion we used fend = 100. We report in Table 1 the best results
obtained among the different values for the parameters. We run both algorithms 10 times
on each instance and we report the lowest number of colors found, the percentage of success
(indicating the number of runs in which the instance was solved), the mean number of iterations
for solving only the best k-coloring found and the mean time. For some instances the algorithms
were unable to find a better coloring than the one found by DSATUR (which may be already
optimal). In this case only the minimum k-coloring found is reported.

The results clearly indicate that the second architecture for the local search appears to
outperform the first one: typically the number of colors found is less than for the first one.

For the next experiments we consider only the second local search and we take the values
of δ for which the best solutions were obtained.

5.2 Perturbations

For the first kind of perturbation proposed we refer to [25] and we use the parameters settings
and results presented there. The second and the third kind of perturbation have only one
parameter to be tuned, that is, the number of colors to remove. To normalize this number
among different instances, we decided to put it in relation with the current number of colors,
by multiplying k by a coefficient γ ∈ (0, 1). We tested γ ∈ {0.05, 0.15, 0.25}.

Further parameters to be considered are the number of local search iterations before the
next perturbation and which acceptance criterion should be applied. For the former we use
lsiter × |V | and we tested lsiter = {1, 2, 4, 8} and for the latter we considered a percentage of
new solutions accepted indicated by Div and we tested: Div ∈ {80%, 100%} where Div = 100%
corresponds to the case in which every new solution is accepted.

Table 2 shows the results obtained in 25 runs for the best combination of parameters on
different instances. In the table we report the starting k-coloring which is the last one solved
by DSATUR, the best k-coloring found at the end of the search, the percentage of successful
runs, the mean of the total number of iteration needed by the algorithm to solve to feasibility
all the k-coloring (from the starting one down to the best), the mean number of iterations for
solving the best k-coloring found and the mean time for the whole run. Last columns indicate
the combination of parameters which performed best.

From the experimental results we can observe the following results:

• on Leighton and Queens instances the third type of perturbation can reach the same or
higher success rates in slightly less iterations than the second type.

• on Leighton and Queens instances the second and third type of perturbation shows better
performance than the first one, because they are able to reach the same success rate in
much less iterations.

6

Local Search 1 Local Search 2

inst. tl k % succ. iter. time δ k % succ. iter. time

1-Insertions-5 - 6 - - - - 6 - - -
2-Insertions-4 - 5 - - - - 5 - - -
3-Insertions-4 - 5 - - - - 5 - - -
4-Insertions-4 - 5 - - - - 5 - - -
1-FullIns-4 - 5 - - - - 5 - - -
2-FullIns-4 - 6 - - - - 6 - - -
3-FullIns-4 - 7 - - - - 7 - - -
4-FullIns-4 - 8 - - - - 8 - - -
5-FullIns-3 - 8 - - - - 8 - - -
DSJC250.5 1 31 60 369,228 15.3 0.5 28 20 153,608 7.2
DSJC500.1 1 14 100 11,307 1.5 1 12 10 564,769 17.5
DSJC500.9 3 132 10 2,343 80.7 1 127 10 3,573 37.5
DSJR500.1 - 12 - - - - 12 - - -
DSJR500.5 1 126 40 204,312 31.1 0.5 124 20 1,322,263 74.4
le450-5a 3 6 40 2,605 1.4 1 5 100 43,976 2.4
le450-5b 2 6 30 5,713 1.4 0.5 5 60 39,755 2.1
le450-5d 3 6 100 14,511 1.9 0.5 5 100 2,383 3,0
le450-15a - 17 - - - 0.5 15 100 69,575 2.6
le450-15b - 16 - - - 1 15 100 55,241 2.3
le450-15c 2 17 20 2,570 9.3 3 15 60 28,034 3.7
le450-15d 5 18 50 3,911 5.9 2 15 20 65,606 4.9
le450-25c - 29 - - - 0.5 26 100 100,595 3.8
le450-25d - 28 - - - 0.5 26 100 85,563 3.3

queen13-13 - 16 - - - 0.5 14 50 104,607 2.4
queen16-16 - 19 - - - 0.5 18 100 1,267 1.0

Table 1: Comparison between two local search schemes enhanced by Tabu Search. Results are
averaged over 10 runs. We report for each instance the value of δ which gave best results, the
best k-coloring found, the percentage of successful runs, the mean number of iterations needed
for solving only the best k-coloring and the time expressed in seconds.

7

P1

inst. start k best k % succ. tot. iter. iter. time lsiter Div piter wp

DSJC250.5 - 28 76 - 3,550,914 - 30 100 1 0.5
DSJC500.1 - - - - - - - - - -
le450-15a - 15 100 - 95,246 - 30 100 0.5 0.5
le450-15b - 15 100 - 63,920 - 30 100 0.2 0.5
le450-15c - 15 100 - 451,714 - 10 100 2 0.25
le450-15d - 15 100 - 2,128,483 - 10 100 2 0.25
le450-25c - 26 100 - 108,312 - 20 100 0.2 0.5
le450-25d - 26 100 - 99,785 - 30 100 0.2 0.25

queen13-13 - - - - - - - - - -

P2

inst. start k best k % succ. tot. iter. iter. time lsiter Div γ

DSJC250.5 36 28 40 439,151 367,213 27.9 4 100 0.05
DSJC500.1 15 12 8 389,887 385,389 17.2 4 80 0.15
le450-15a 17 15 100 60,375 60,302 4.24 8 100 0.05
le450-15b 16 15 100 72,287 72,287 4.9 8 80 0.05
le450-15c 29 15 100 262,250 107,173 41.3 4 80 0.25
le450-15d 23 15 100 237,346 168,355 27.4 2 80 0.05
le450-25c 29 26 96 109,264 103,636 13.5 2 100 0.05
le450-25d 28 26 100 85,889 85,374 6.4 4 100 0.05

queen13-13 16 14 64 70,711 70,410 2.9 4 80 0.05

P3

inst. start k best k % succ. tot. iter. iter. time lsiter Div γ

DSJC250.5 36 28 40 390,408 324,157 39.6 2 100 0.05
DSJC500.1 15 12 4 285,815 274,567 11.3 8 100 0.15
le450-15a 17 15 100 57,918 57,821 4.0 8 100 0.05
le450-15b 16 15 100 67,492 67,492 6.1 4 80 0.15
le450-15c 29 15 100 180,764 84,967 31.6 4 80 0.25
le450-15d 23 15 100 355,683 95,958 77.1 1 80 0.25
le450-25c 29 26 100 100,107 94,839 8.2 4 100 0.05
le450-25d 28 26 100 102,457 101,887 5.5 8 100 0.05

queen13-13 16 14 88 72,887 72,623 2.6 4 80 0.15

Table 2: Comparison between three perturbation schemes. Results are obtained on 25 runs
with fend = 100. We report for each instance the starting k-coloring corresponding to the best
k-coloring solved by DSATUR in 8 seconds, the best k-coloring found by the ILS algorithm, the
percentage of successful runs, the mean number of iterations for solving all k-colorings, the mean
number of iterations for solving only the best k-coloring, the mean CPU time needed expressed
in seconds, and the winning parameters characterizing the strength of perturbation (percentage
of diversification, Div, number of local search iterations before perturbing the solution, lsiter,
number of perturbing moves of kind P1, piter, walk probability wp, and fraction of current k
colors to remove, γ). All means are computed only over the successful runs.

8

• the results on Random Instances (DSJC250.5 and DSJC500.1) seem to indicate that the
first kind of perturbation is better than the second and third one. It has to be considered,
however, that in [25] a number of ten millions iterations was used as stopping criterion
while in our case this number is much lower.

In general, there seems to be a slight advantage for the third type of perturbation. The
advantage of this type of perturbation lies in the possibility of combining two different ways of
guiding the search, each of them exploiting a different type of information. In particular, the
dsat heuristic reconstructs part of a solution according to a heuristic which is different from
the one used by the local search. Concerning the strength of the perturbation, some conclusion
can be drawn by considering the best combinations of parameters. In particular, the number of
colors to remove before applying the dsat heuristic seems to be low. Hence, the part of solution
to be reconstructed is small and the strength of the perturbation is far from the extreme case
of a random restart. Only instances le450-15c and le450-15d seem to require more disruptive
perturbations.

Another positive aspect of the dsat recoloring (and also the random recoloring) when com-
pared to the directed diversification is that the recoloring perturbation appears to be more
robust and is much easier to tune. The latter is mainly due to the fact that the recoloring
perturbation only involves one parameter, while the directed diversification uses two.

When comparing the results of the ILS with those of the simple local search in Table 1, we
notice that, with the only exception of instance DSJC500.1, the success rate increases. This
indicates that, under equal conditions, the application of ILS helps to improve the performance
of local search and it gains further robustness.

5.3 Comparison to available metaheuristics

We report the peak performance of ILS in Table 3 and we compare the results with the best
results published so far which are those obtained by the Hybrid Evolutionary Algorithm (HEA)
of Galinier and Hao [14], which is currently one of the best performing metaheuristics for the
graph coloring problem. They also present peak performance, intended as consequence of tuning
efforts. The HEA algorithm applies a recombination of two solutions which are randomly chosen
from the population and then improves the new solution by applying the same Tabu Search
algorithm we used here. Therefore comparison can be made properly comparing the number
of iterations of Tabu Search, because the overhead due to the perturbation or the crossover
is minor. In the table we report the best k-coloring found and the number of Tabu Search
iterations needed for solving only that specific number of colors.

For the structured graphs we just report the results of Table 2. Indeed, already with
fend = 100 ILS requires less iterations for finding feasibility and clearly appears more robust.
Here, times reported are the times relative only to the last coloring, as done in [14].

For the random graphs the results of Table 2 are worst than those presented for HEA.
However the conditions in which they were generated were different. We tried, therefore, to
reproduce the conditions as equal as possible by solving only the given number of colors and
fixing fend = 300. Results improve and become comparable with those of HEA, at least in
terms of speed. However a larger and more rigorous experimental analysis has to be conducted
to draw statistically significant conclusions.

In Appendix we report the results on a larger number of instances from the benchmark suite
obtained with one reasonable parameter setting.

6 Conclusions

In this work we studied the application of ILS to graph coloring problem focusing on large
or hard instances, where we assumed as “hard” the instances which are not easily solvable by

9

ILS HEA
inst. best k % succ. iter. best k % succ. iter.

DSJC250.5 28 80 557,949 28 90 490,000
le450-15c 15 100 84,967 15 60 194,000
le450-25c 26 100 94,839 26 100 800,000

Table 3: Experimental results of ILS compared with those of Hybrid Evolutionary Algorithm
(HEA) presented in [14]. ILS was run 10 times on each instance. For the instance DSJC250.5
fend was set equal to 300 while for the other instances was 100. We report the best k-coloring
found, the percentage of successful runs and the mean number of iterations for finding the best
k taken over the successful runs.

the DSATUR exact algorithm. The main contribution of this abstract is the analysis of the
performance of different kinds of perturbations for the Iterated Local Search metaheuristics.
The comparison was made after a phase of tuning so that the best configuration of parameters
were considered. Among the perturbations tested the most robust approach seems to be to
remove a few number of colors and reconstructing the solution by means of some heuristic
information. Compared to the perturbation applied in [25], this perturbation also has the
advantage of requiring only one parameters instead of three.

In this extended abstract we compared algorithms based on peak performance, that is, the
performance of the algorithms when the parameters are reasonably fine-tuned (experiments on
the larger instances in the benchmark suite are currently under way and the results will be
presented at the Symposium). In this process, however, we noted that parameter settings may
be sensitive to the particular instance at hand. It is our intention to extend our algorithms
by some type of reactive mechanism, where parameters are tuned automatically during the
algorithm run. To this aim, we are currently analyzing the relationship between distance of
solutions, diversification and search performance in order to gain deeper insight in the problem
and devise a reasonable strategy to automatically adjust the parameters.

Acknowledgments We would like to thank Marco Pranzo, Luis Paquete and Irina Dumitrescu for
suggestions and discussions which contributed to the development of this work.

This work was supported by the “Metaheuristics Network”, a Research Training Network funded by the

Improving Human Potential programme of the CEC, grant HPRN-CT-1999-00106. The information

provided is the sole responsibility of the authors and does not reflect the Community’s opinion. The

Community is not responsible for any use that might be made of data appearing in this publication.

References

[1] E.B. Baum. Iterated descent: A better algorithm for local search in combinatorial optim-
ization problems. Manuscript, 1986.

[2] D. Brélaz. New methods to color the vertices of a graph. Communications of the ACM,
22(4):251–256, 1979.

[3] M.W. Carter. A survey of practical applications of examination timetabling algorithms.
Operations Research, 34(2):193–202, 1986.

[4] D.J. Castelino, S. Hurley, and N.M. Stephens. A tabu search algorithm for frequency
assignment. Annals of Operations Research, 63:301–320, 1996.

[5] M. Chams, A. Hertz, and D. De Werra. Some experiments with simulated annealing for
coloring graphs. European Journal of Operational Research, 32:260–266, 1987.

10

[6] J. Culberson and F. Luo. Exploring the k-colorable landscape with iterated greedy. In D.S.
Johnson and M.A. Trick, editors, Cliques, Coloring, and Satisfiability: Second DIMACS
Implementation Challenge, volume 26 of DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, pages 499–520. American Mathematical Society, 1996.

[7] L. Davis. Order-based genetic algorithms and the graph coloring problem. In Handbook of
Genetic Algorithms, pages 72–90. Van Nostrand Reinhold; New York, 1991.

[8] R. Dorne and J. Hao. Tabu search for graph coloring, t-coloring and set t-colorings. In
S. Voss, S. Martello, I.H. Osman, and C. Roucairol, editors, Metaheuristics: advances and
trends in local search paradigms for optimization, pages 77–92. Kluver Academic Publish-
ers, 1998.

[9] A.E. Eiben, J.K. van der Hauw, and J.I. van Hemert. Graph coloring with adaptive
evolutionary algorithms. Journal of Heuristics, 4(1):25–46, 1998.

[10] C. Fleurent and J. Ferland. Genetic and hybrid algorithms for graph coloring. Annals of
Operations Research, 63:437–464, 1996.

[11] C. Fleurent and J.A. Ferland. Object-oriented implementation of heuristic search methods
for graph coloring, maximum clique, and satisfiability. In D. S. Johnson and eds. M. Trick,
editors, Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge,
volume 26 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
pages 619–652. American Mathematical Society, 1996.

[12] C. Fleurent and J.A. Ferland. Genetic and hybrid algorithms for graph coloring. In et P.
L. Hammer G. Laporte, I. H. Osman, editor, Annals of Operations Research, volume 63,
pages 437–461. Baltzer Science Publishers, 1996.

[13] P. Galinier and J.K. Hao. Hybrid evolutionary algorithms for graph coloring. Journal of
Combinatorial Optimization, 3(4):379–397, 1999.

[14] P. Galinier and J.K. Hao. Hybrid evolutionary algorithms for graph coloring. Journal of
Combinatorial Optimization, 3(4):379–397, 1999.

[15] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. Freeman, San Francisco, CA, USA, 1979.

[16] A. Hertz and D. de Werra. Using tabu search techniques for graph coloring. Computing,
39:345–351, 1987.

[17] D.S. Johnson, C.R. Aragon, L.A. McGeoch, and C. Schevon. Optimization by simulated
annealing: An experimental evaluation: Part II, graph coloring and number partitioning.
Operations Research, 39(3):378–406, 1991.

[18] D.S. Johnson and L.A. McGeoch. The travelling salesman problem: A case study in local
optimization. In E.H.L. Aarts and J.K. Lenstra, editors, Local Search in Combinatorial
Optimization, pages 215–310. John Wiley & Sons, Chichester, UK, 1997.

[19] M. Laguna and R. Mart. A GRASP for coloring sparse graphs. Computational Optimization
and Applications, 19(2):165–178, 2001.

[20] F.T. Leighton. A graph coloring algorithm for large scheduling problems. Journal of
Research of the National Bureau of Standards, 85:489–506, 1979.

[21] H.R. Lourenço, O. Martin, and T. Stützle. Iterated local search. In F. Glover and
G. Kochenberger, editors, Handbook of Metaheuristics. Kluwer Academic Publishers, Bo-
ston, MA, USA, 2002. to appear.

11

[22] A. Mehrotra and M. Trick. A column generation approach for graph coloring. INFORMS
Journal On Computing, 8(4):344–354, 1996.

[23] S. Minton, M.D. Johnston, A.B. Philips, and P. Laird. Minimizing conflicts: A heuristic
repair method for constraint satisfaction and scheduling problems. Artificial Intelligence,
52:161–205, 1992.

[24] J. Mycielski. Sur le coloriage des graphes. Colloquim Mathematiques, 3:161–162, 1955.

[25] L. Paquete and T. Stützle. An experimental investigation of iterated local search for
coloring graphs. In S. Cagnoni, J. Gottlieb, E. Hart, M. Middendorf, and G.R. Raidl,
editors, Applications of Evolutionary Computing, volume 2270 of LNCS, pages 122–131.
Springer-Verlag, Berlin, Germany, 2002.

[26] T. Stützle. Applying iterated local search to the permutation flow shop problem. Technical
Report AIDA–98–04, FG Intellektik, TU Darmstadt, August 1998.

12

A Instances classification

Our instances classification. We divided the instances into four groups: (i) those which are
solved to optimum by the DSATUR algorithm in less than 8 seconds on our machine, a Pentium
III 700 MHz processor with 256 KB cache and 512 MB RAM; (ii) the instances for which the
exact optimum is known but it can not be found by DSATUR in short time; (iii) the instances
for which the optimum is not known and (iv) the instances of size larger than 1000 vertices.

solved by DSATUR opt-known opt-unknown large
inithx.i.1 1-Insertions-4 1-FullIns-3 5-FullIns-4

2-Insertions-3 2-Insertions-4 1-FullIns-4 3-FullIns-5
3-Insertions-3 4-Insertions-3 1-FullIns-5 3-Insertions-5

anna le450-15a 1-Insertions-5 4-FullIns-5
david le450-15b 1-Insertions-6 abb313GPIA

fpsol2.i.1 le450-15c 2-FullIns-3 ash608GPIA
fpsol2.i.2 le450-15d 2-FullIns-4 ash958GPIA
fpsol2.i.3 le450-25c 2-FullIns-5 qg.order100
games120 le450-25d 2-Insertions-5 qg.order60

homer le450-5a 3-FullIns-3 wap01
huck le450-5b 3-FullIns-4 wap02

inithx.i.2 le450-5d 3-Insertions-4 wap03
inithx.i.2 queen11-11 4-FullIns-3 wap04
inithx.i.3 queen13-13 4-FullIns-4 wap05
inithx.i.3 queen8-8 4-Insertions-4 wap06

jean queen9-9 5-FullIns-3 wap07
le450-25a ash331GPIA wap08
le450-25b DSJC1000.1
miles1000 DSJC1000.5
miles1500 DSJC1000.9
miles250 DSJC125.1
miles500 DSJC125.5
miles750 DSJC125.9
mug100-1 DSJC250.1
mug100-25 DSJC250.5
mug88-1 DSJC250.9
mug88-25 DSJC500.1
mulsol.i.1 DSJC500.5
mulsol.i.2 DSJC500.9
mulsol.i.3 DSJR500.1
mulsol.i.4 DSJR500.1c
mulsol.i.5 DSJR500.5
myciel3 latin-square-10
myciel6 queen10-10
myciel7 queen12-12
queen5-5 queen14-14
queen8-12 queen15-15
zeroin.i.1 queen16-16
zeroin.i.2 school1-nsh
zeroin.i.3 school1
myciel4 will199GPIA
le450-5c
myciel5

qg.order30
qg.order40
queen6-6
queen7-7

13

B Results on the benchmark suite

We report the results of the ILS described in the text on instances taken from the bench-
mark suite. The parameter setting is kept as constant as possible and is the one that guaran-
tees on average best performance. Values of δ = {0.5, 1} for the tabu length parameter and
γ = {0.1, 0.001} for the perturbation parameter are used. As stopping criteria fend = 200 is
maintained in all the experiments as also the number of tabu search iterations between two
perturbations which is k · |V |. Given are the start coloring number given by DSATUR, the best
k-coloring found, the percentage of successful runs, the mean number of iterations for solving
all k-colorings, the mean number of iterations for solving only the best k-coloring and the mean
CPU time needed expressed in seconds. Means are taken over the successful runs. A last
column indicate when parameters are changed. Where only the minimum k-coloring found is
reported it means that ILS was not able to improve the results found by DSATUR (the optimal
solution for those instances is unknown). We include also results on real-life optical network
design problems.

inst. nodes density start k best k % succ. tot. iter. par. iter time (δ, γ)

DSJC250.5 250 0.50 36 28 80 691,710 642,703 37 sec (0.3,0.001)
DSJC500.1 500 0.10 15 13 100 7,999 7,408 4 sec (0.3,0.001)
DSJC500.5 500 0.50 64 49 20 3,929,822 2,287,199 498 sec (0.3,0.001)
DSJC500.9 500 0.90 163 126 10 5,872,162 2,615,735 19 min (0.3,0.001)
DSJR500.5 500 0.47 130 124 30 5,889,767 5,456,854 369 sec (0.3,0.001)
DSJC1000.5 1000 0.50 114 89 10 26,468,228 14,571,427 1.6 h (0.3,0.001)
le450-15a 450 0.08 17 15 100 153,242 153,114 5 sec (0.3,0.001)
le450-15b 450 0.08 16 15 100 83,354 83,354 3 sec (0.3,0.001)
le450-15c 450 0.17 23 15 90 754,240 568,940 41 sec (1,0.1)
le450-15d 450 0.17 24 15 30 624,473 520,935 42 sec (1,0.1)
le450-25c 450 0.17 29 26 100 186,314 180,518 12 sec (0.3,0.001)
le450-25d 450 0.17 28 26 100 243,991 243,528 11 sec (0.3,0.001)

2-Insertions-4 149 0.05 5 5 (0.3,0.001)
3-Insertions-4 281 0.03 5 4 20 13,677 13,677 1 sec (0.3,0.001)
3-Insertions-5 1406 0.01 6 6 (0.3,0.001)
3-FullIns-4 405 0.04 7 7 (0.3,0.001)
3-FullIns-5 2030 0.02 8 8 (0.3,0.001)
4-FullIns-5 4146 0.01 9 9 (0.3,0.001)

latin-square-10 900 0.76 129 99 60 14,807,059 10,194,314 1.6 h (0.3,0.1)
qg.order60 3600 0.03 63 60 100 1,175 1,101 568 sec (0.3,0.001)
queen13-13 169 0.47 16 14 100 76,583 76,347 2 sec (0.3,0.001)
queen16-16 256 0.39 19 18 100 1,391 1,391 1 sec (0.3,0.001)

wap01 2368 0.04 48 42 20 213,005 81,545 45 sec (1,0.1)
wap02 2464 0.04 46 42 100 297,935 285,218 72 sec (1,0.1)
wap03 4730 0.03 55 45 60 621,568 253,392 335 sec (1,0.1)
wap04 5231 0.02 48 44 70 15,757,256 15,466,696 2 h (1,0.1)
wap05 905 0.11 51 50 100 206 206 2 sec (1,0.1)
wap06 947 0.10 45 42 100 69,397 56,012 10 sec (1,0.1)
wap07 1809 0.06 46 43 20 351,929 217,320 71 sec (1,0.1)
wap08 1870 0.06 45 43 100 42,589 34,802 16 sec (1,0.1)

C Benchmark code

We report the results obtained by running the benchmark code available from
http://mat.gsia.cmu.edu/COLOR/color.html on our machine.

DFMAX(r100.5.b)
0.01 (user) 0.00 (sys) 0.00 (real)
Best: 4 57 35 5 61 34 3 62 90

DFMAX(r200.5.b)
0.13 (user) 0.00 (sys) 0.00 (real)

14

Best: 113 86 147 66 14 134 32 127 161 186 70

DFMAX(r300.5.b)
1.16 (user) 0.00 (sys) 1.00 (real)
Best: 279 222 116 17 39 127 190 158 196 288 263 54

DFMAX(r400.5.b)
7.15 (user) 0.00 (sys) 7.00 (real)
Best: 370 108 27 50 87 275 145 222 355 88 306 335 379

DFMAX(r500.5.b)
27.26 (user) 0.01 (sys) 28.00 (real)
Best: 345 204 148 480 16 336 76 223 260 403 141 382 289

15

