
A comparison of the performance of different

metaheuristics on the timetabling problem

Olivia Rossi-Doria1, Michael Sampels2, Mauro Birattari3, Marco Chiarandini3,
Marco Dorigo2, Luca M. Gambardella4, Joshua Knowles2, Max Manfrin2,
Monaldo Mastrolilli4, Ben Paechter1, Luis Paquete3, Thomas Stützle3

1 School of Computing, Napier University,
10 Colinton Road, Edinburgh, EH10 5DT, Scotland
{o.rossi-doria|b.paechter}@napier.ac.uk

2 IRIDIA, Université Libre de Bruxelles, CP 194/6,
Av. Franklin D. Roosevelt 50, 1050 Bruxelles, Belgium
{msampels|mdorigo|jknowles|mmanfrin}@ulb.ac.be

3 Intellektik, Technische Universitaet Darmstadt,
Alexanderstr. 10, 64283 Darmstadt, Germany

{mbiro|machud|lpaquete|tom}@intellektik.informatik.tu-darmstadt.de

4 IDSIA, Galleria 2, 6928 Manno, Switzerland
{luca|monaldo@idsia.ch}

Abstract. The main goal of this paper is to attempt an unbiased com-
parison of the peformance of straightforward implementations of five
different metaheuristics on a university course timetabling problem. In
particular the metaheuristics under consideration are Evolutionary Al-
gorithms, Ant Colony Optimization, Iterated Local Search, Simulated
Annealing, and Tabu Search. To attempt fairness the implementations
of all the algorithms use a common solution representation, and a com-
mon neighbourhood structure or local search. The results show that no
metaheuristic is best on all the timetabling instances considered. More-
over, even when instances are very similar, from the point of view of the
instance generator, it is not possible to predict the best metaheuristic,
even if some trends appear when focusing on particular instance classes.
These results underline the difficulty of finding the best metaheuristics
even for very restricted classes of timetabling problem.

1 Introduction

This work is part of the Metaheuristic Network?, a European Commission project
undertaken jointly by five European institutions, whose aim is to empirically
compare and analyse the performance of various metaheuristics on different com-
binatorial optimization problems including timetabling.

? http://www.metaheuristics.net/

Course timetabling problems arise periodically at every educational institu-
tion, as schools and universities. A general problem consists in assigning a set
of events (classes, lectures, tutorials, etc) into a limited number of timeslots,
so that a set of constraints are satisfied. Constraints are usually classified as
hard or soft. Hard constraints are constraints that must not be violated under
any circumstances, e.g. students cannot attend two classes at the same time.
Soft constraints are constraints that should preferably be satisfied, but can be
accepted with a penalty associated to their violation, e.g. students should not at-
tend three classes in a row. The general course timetabling problem is NP-hard.
A considerable amount of research has dealt with the problem, comprehensive
reviews can be found in [6, 21].

We consider here a reduction of a typical university timetabling problem. We
aim at an unbiased comparison of the performance of straightforward implemen-
tations of five different metaheuristics on this problem. In order to attempt a
fair and meaningful analysis of the results of the comparison we have restricted
all the algorithms to the use of a common direct solution representation and
search landscape. Moreover all use the same library, programming language and
compiler, and experiments are run on the same hardware.

The stress here is on the comparison of the different methods under similar
conditions. More freedom in the use of more efficient representations and more
heuristic information may give different results.

The rest of the paper is organized as follows: In Section 2 a description of the
particular timetabling problem considered is given and the classes of instances
used for the experiments are presented. In Section 3 we describe the common
representation and search landscape used for all the implementations of meta-
heuristics. In Section 4 we give a description of the general features of each
metaheuristic under consideration and details of our implementations. Finally
in Section 5 we outline the results and conclusions of our study.

2 The University Course Timetabling Problem

The timetabling problem considered here is a reduction of a typical university
course timetabling problem. It has been introduced by Ben Paechter to reflect
aspects of Napier University’s real timetabling problem.

2.1 Problem description

The problem consists of a set of events or classes E to be scheduled in 45 timeslots
(5 days of 9 hours each), a set of rooms R in which events can take place, a set
of students S who attend the events, and a set of features F satisfied by rooms
and required by events. Each student attends a number of events and each room
has a size. A feasible timetable is one in which all events have been assigned a
timeslot and a room so that the following hard constraints are satisfied:

– no student attends more than one event at the same time;

– the room is big enough for all the attending students and satisfies all the
features required by the event;

– only one event is in each room at any timeslot.

In addition, a candidate timetable is penalised equally for each occurrence of the
following soft constraint violations:

– a student has a class in the last slot of a day;
– a student has more than two classes in a row;
– a student has a single class on a day.

Note that the soft constraints have been chosen to be representative of three
different classes: the first one can be checked with no knowledge of the rest of
the timetable; the second one can be checked while building a solution, taking
into account the events assigned to nearby timeslots; and finally the last one
can be checked only when the timetable is complete, and all events have been
assigned a timeslot.

The objective of the problem is to minimize the number of soft constraint
violations in a feasible solution. All infeasible solutions are considered worthless.

2.2 Problem Instances

A generator is used to produce problem instances with different characteristics
for different values of given parameters. All instances produced have a perfect
solution, i.e. a solutions with no constraint violations, hard or soft. The generator
takes eight command line parameters which specify various characteristics of
the instance, and a random seed. Using the same seed will produce the same
problem instance - a different seed will produce a different instance with the
same characteristics.

Three classes of instances of different size have been selected for comparison
purposes, respectively called small, medium and large. They are generated with
the sets of parameters reported in Table 1.

Class small medium large

Num events 100 400 400
Num rooms 5 10 10
Num features 5 5 10
Approx features per room 3 3 5
Percent feature use 70 80 90
Num students 80 200 400
Max events per student 20 20 20
Max students per event 20 50 100

Table 1. Parameters used to produce the different instance classes.

Each class of problem has been determined experimentally to be given a
specified time limit. The time limits for the problem classes are respectively 90,

900, and 9000 seconds for the small, medium and large class. These timings
refer to durations on a specific piece of hardware (see Section 5).

3 Common search landscape

All metaheuristics developed here for the Metaheuristics project employ the
same direct solution representation and search landscape, as described in the
following (see also [20]). In particular we used a common local search in an
evolutionary algorithm, an ant colony optimization algorithm, and an iterated
local search. A simulated annealing, and a tabu search were restricted to the
same neighbourhood structure.

3.1 The solution representation

We chose a direct solution representation to keep things as simple as possible. A
solution consists of an ordered list of length |E| where the positions correspond
to the events (position i corresponds to event i for i = 1, ..., |E|). An integer
number between 1 and 45 (representing a timeslot) in position i indicates the
timeslot to which event i is assigned.

The room assignments are not part of the explicit representation; instead
we use a matching algorithm to generate them. For every timeslot there is a
list of events taking place in it, and a preprocessed list of possible rooms to
which these events can be assigned according to size and features. The matching
algorithm gives a maximum cardinality matching between these two sets using
a deterministic network flow algorithm. If there are still unplaced events left, it
takes them in label order and puts each one into the room of correct type and
size which is occupied by the fewest events. If two or more rooms are tied, it takes
the one with the smallest label. This procedure ensures that each event-timeslot
assignment corresponds uniquely to one timetable, i.e. a complete assignment of
timeslots and rooms to all the events.

3.2 The neighbourhood structure and local search

The solution representation described above allows us to define a neighbourhood
using simple moves involving only timeslots and events. The room assignments
are taken care of by the matching algorithm.

The neighbourhood is the union of two smaller neighbourhoods, N1 defined
by an operator that moves a single event to a different timeslot, and N2 defined
by a second operator that swaps the timeslots of two events.

The Local Search is a stochastic first improvement local search based on
the described neighbourhood. It goes through the list of all the events in a
random order, and tries all the possible moves in the neighbourhood for every
event involved in constraint violations, until improvement is found. It solves
hard constraint violations first, and then, if feasibility is reached, it looks at soft
constraint violations as well. Delta evaluation of solutions is extensively used

to allow a faster search through the neighbouring timetables. A more detailed
description of the local search is outlined in the following:

1. Ev-count ← 0;
Generate a circular randomly-ordered list of the events;
Initialize a pointer to the left of the first event in the list;

2. Move the pointer to the next event;
Ev-count ← Ev-count + 1;
if (Ev-count = |E|) {

Ev-count ← 0;
goto 3.; }

(a) if (current event NOT involved in hard constraint violation (hcv))
{ goto 2.; }

(b) if (6 ∃ an untried move for this event) { goto 2.; }
(c) Calculate next move (first in N1, then N2)

?? and generate resulting po-
tential timetable;

(d) Apply the matching algorithm to the timeslots affected by the move and
delta-evaluate the result;

(e) if (move reduces hcvs) {
Make the move;
Ev-count ← 0;
goto to 2.;}

(f) else goto 2.(b);
3. if (∃ any hcv remaining) END LOCAL SEARCH;
4. Move the pointer to the next event;

Ev-count ← Ev-count + 1;
if (Ev-count = |E|) END LOCAL SEARCH;
(a) if (current event NOT involved in soft constraint violation (scv))

{ goto 4.; }
(b) if (6 ∃ an untried move for this event) { goto 4.; }
(c) Calculate next move (first in N1, then N2)

?? and generate resulting po-
tential timetable;

(d) Apply the matching algorithm to the timeslots affected by the move and
delta-evaluate the result;

(e) if (move reduces scvs without introducing a hcv) {
Make the move;
Ev-count ← 0;
goto 4.; }

(f) else goto 4.(b);

Since the described local search can take a considerable amount of CPU time,
it could be more effective within the context of some of the metaheuristics to

?? That is, for the event being considered, potential moves are calculated in strict order.
First, we try to move the event to the next timeslot, then the next, then the next
etc. If this search through N1 fails then we move through the N2 neighbourhood, by
trying to swap the event with the next one in the list, then the next one, and so on.

use this time in a different way. We therefore introduced in the local search a
parameter for the maximum number of steps allowed, which was left free for the
different metaheuristic implementations.

4 Metaheuristics

In the following we briefly describe the basic principles of each metaheuristic
under consideration and give details of the implementations for the timetabling
problem described in Section 2 which are used for the comparison.

4.1 Evolutionary Algorithm

Evolutionary Algorithms (EAs) are based on a computational model of the mech-
anisms of natural evolution [3]. EAs operate on a population of potential solu-
tions and comprise three major stages: selection, reproduction and replacement.
In the selection stage the fittest individuals have a higher chance than those less
fit of being chosen as parents for the next generation, as in natural selection.
Reproduction is performed by means of recombination and mutation operators
applied to the selected parents: recombination combines parts of each of two par-
ents to create a new individual, while mutation makes usually small alterations
in a copy of a single individual. Finally, individuals of the original population
are replaced by the new created ones, usually trying to keep the best individuals
and deleting the worst ones. The exploitation of good solutions is ensured by the
selection stage, while the exploration of new zones of the search space is carried
out in the reproduction stage, based on the fact that the replacement policy
allows the acceptance of new solutions that do not necessarily improve existing
ones.

EAs have been successfully used to solve a number of combinatorial opti-
mization problems, including timetabling. State-of-the-art algorithms often use
problem-specific information to enhance their performance, such as heuristic
mutation [19] or some heuristically guided constructive technique [17].

Here, for the benefit of the comparison and understanding of the role of
each component of the algorithm, we propose a basic implementation that uses
only the problem-specific heuristic information coming from the local search.
It is characterized by a steady-state evolution process, i.e. at each generation
only one couple of parent individuals is selected for reproduction. A generational
genetic algorithm, where the entire population is replaced at each generation, was
also implemented, but the steady-state scheme gave better results. Tournament
selection is used, that is a number of individuals are chosen randomly from the
current population and the best one in terms of fitness function is selected as
parent. The fitness function f(s) for a solution s is given by the weighted sum of
the number of hard constraint violations hcv and soft constraint violations scv

f(s) := # hcv(s) ∗ C + # scv(s),

where C is a constant larger than the maximum possible number of soft con-
straint violations. The crossover used is a uniform crossover on the solution rep-
resentation, where for each event a timeslot’s assignment is inherited either from
the first or from the second parent with equal probability. The timeslots assign-
ment corresponds uniquely to a complete timetable after applying the matching
algorithm. Mutation is just a random move in the neighbourhood defined by the
local search extended with 3-cycle permutations of the timeslots of three distinct
events, which corresponds to the complete neighbourhood defined in [20]. The
offspring replaces the worst member of the population at each generation. The
algorithm is outlined in Algorithm 1.

Algorithm 1 Evolutionary Algorithm

input: A problem instance I
for i = 1 to n do

{generate a random population of solutions}
si ← random initial solution
si ← solution si after local search
sort population by fitness

end for

while time limit not reached do

Select two parents from population by tournament selection
s← child solution after crossover with probability α
s← child solution after mutation with probability β
s← child solution after applying local search
sn ← child solution s replaces worst member of the population
sort population by fitness
sbest ← best solution in the population s1

end while

output: An optimized solution sbest for I

The algorithm is a memetic algorithm using the local search described in
Section 3. The local search is run with maximum number of steps 200, 1000, and
2000 respectively for the small, medium and large instances. The problem is to
find a balance between a reasonable number of steps for the local search and a
sufficient number of generations for the evolutionary algorithm to evolve while
the local search is not abruptly cut too often and can effectively help to reach
local optima.

The initial population is built assigning randomly, for each individual, a
timeslot to each event according to a uniform distribution, and applying the
matching algorithm. Local search is then applied to each member of the initial
population. The population size n is 10, the tournament size is 5, crossover rate
is α = 0.8 and mutation rate is β = 0.5.

4.2 Ant Colony Optimization

Ant Colony Optimization (ACO) is a metaheuristic proposed by Dorigo et
al. [10]. The inspiration of ACO is the foraging behavior of real ants. The basic

ingredient of ACO is the use of a probabilistic solution construction mechanism
based on stigmergy. ACO has been applied successfully to numerous combina-
torial optimization problems including the quadratic assignment problem, satis-
fiability problems, scheduling problems etc. The algorithm presented here is the
first implementation of an ACO approach for a timetabling problem. It follows
the ACS branch of the ACO metaheuristic, which is described in detail in [4]
and which showed good results for the traveling salesman problem [9].

Algorithm 2 Ant Colony System

τ(e, t)← τ0 ∀ (e, t) ∈ E × T
input: A problem instance I
calculate c(e, e′) ∀ (e, e′) ∈ E2

calculate d(e), f(e), s(e) ∀ e ∈ E
sort E according to ≺, resulting in e1 ≺ e2 ≺ · · · ≺ en

j ← 0
while time limit not reached do

j ← j + 1
for a = 1 to m do

{construction process of ant a}
A0 ← ∅
for i = 1 to n do

choose timeslot t randomly according to probability distribution P for event
ei

perform local pheromone update for τ(ei, t)
Ai ← Ai−1 ∪ (ei, t)

end for

s← solution after applying matching algorithm to An

s← solution after applying local search for h(j) steps to s
sbest ← best of s and Cbest

end for

global pheromone update for τ(e, t) ∀ (e, t) ∈ E × T using Cbest

end while

output: An optimized candidate solution sbest for I

The basic principle of an ACS for tackling the timetabling problem is outlined
in Algorithm 2: At each iteration of the algorithm, each of m ants constructs,
event by event, a complete assignment of the events to the timeslots. To make
a single assignment of an event to a timeslot, an ant takes the next event from
a pre-ordered list, and probabilistically chooses a timeslot for it, guided by two
types of information: (1) heuristic information, which is an evaluation of the
constraint violations caused by making the assignment, given the assignments
already made, and (2) stigmergic information in the form of a ‘pheromone’ level,
which is an estimate of the utility of making the assignment, as judged by previ-
ous iterations of the algorithm. The stigmergic information is represented by a
matrix of ‘pheromone’ values τ : E×T → R≥0, where E is the set of events and
T is the set of timeslots. These values are initialized to a parameter τ0, and then
updated by local and global rules; generally, an event-timeslot pair which has
been part of good solutions in the past will have a high pheromone value, and

consequently it will have a higher chance of being chosen again in the future.
At the end of the iterative construction, an event-timeslot assignment is con-
verted into a candidate solution (timetable) using the matching algorithm. This
candidate solution is further improved by the local search routine. After all m
ants have generated their candidate solution, a global update on the pheromone
values is performed using the best solution found since the beginning. The whole
construction phase is repeated, until the time limit is reached.

The single parts of Algorithm 2 are now described in more detail. The fol-
lowing data are precalculated for events e, e′ ∈ E:

c(e, e′) := # students attending both e and e′,

d(e) := |{e′ ∈ E \ {e} | c(e, e′) 6= 0}|,

f(e) := # features required by e,

a(e) := # students attending e.

We define a total order‡ ≺ on the events by

e ≺ e′ ⇔ d(e) > d(e′) ∨

d(e) = d(e′) ∧ f(e) < f(e′) ∨

d(e) = d(e′) ∧ f(e) = f(e′) ∧ a(e) > a(e′) ∨

d(e) = d(e′) ∧ f(e) = f(e′) ∧ a(e) = a(e′) ∧ l(e) < l(e′) .

Here, l : E → N is an injective function that is only used to handle ties. We define
Ei := {e1, . . . , ei} for the totally ordered events denoted as e1 ≺ e2 ≺ . . . ≺ en.

For the construction of an event-timeslot assignment each ant assigns sequen-
tially timeslots to the events, which are processed according to the order ≺. This
means, it constructs assignments Ai : Ei → T for i = 0, . . . , n.

We start with the empty assignment A0 = ∅. After Ai−1 has been con-
structed, the assignment Ai is constructed as Ai = Ai−1 ∪ {(ei, t)} where t is
chosen randomly out of T with the following probabilities:

P (t = t′ | Ai−1, τ) =
τ(ei, t

′)α · η(ei, t
′)β · π(ei, t

′)γ
∑

u∈T τ(ei, u) · η(ei, u)
β · π(ei, u)γ

.

The parameters β and γ control the weight of the heuristic information cor-
responding to hard and soft constraint violations, respectively. These heuristic
functions η and π are defined as follows.

η(ei, t
′) :=

1

1 +
∑

e∈A−1
i−1

(t′) c(ei, e)

is used to give higher weight to those timeslots that produce fewer student
clashes. In order to give higher weight to those timeslots that produce fewer

‡ We are aware of the fact that it could make more sense to order the events with
respect to the features the other way around, but actually in this case it doesn’t
make significant difference in terms of results.

soft constraint violations, we use:

π(ei, t
′) :=

1

1 + L+ S +Rbefore +Raround +Rafter

,with

L :=

{

a(ei) if t
′ is the last timeslot of the day

0 otherwise,

S := # students attending event ei, but no other events belonging

to the same day as t′ in Ai−1,

Rbefore := # students attending event ei and also events in the two

timeslots before t′ on the same day,

Raround := # students attending event ei and also events in both timeslots

before and after t′ on the same day,

Rafter := # students attending event ei and also events in the two

timeslots after t′ on the same day.

After each construction step, a local update rule on the pheromone matrix
is applied for the entry corresponding to the current event ei and the chosen
timeslot tchosen:

τ(ei, tchosen)← (1− ψ) · τ(ei, tchosen) + ψ · τ0 .

The parameter ψ ∈ [0, 1] is the pheromone decay parameter, which controls
the diversification of the construction process. The higher its value the smaller
the probability to choose the same event-timeslot pair in forthcoming steps.

After the assignment An has been completed, the matching algorithm for
the assignment of rooms is executed, in order to generate a candidate solution
s. The local search routine is applied to s for a number of steps h(j) depending
on the current iteration number j ∈ N.

The global update rule for the pheromone matrix τ is performed after each
iteration as follows: Let Abest be the assignment of the best candidate solution
sbest found since the beginning. For each event-timeslot pair (e, t) we update:

τ(e, t)←

{

(1− ρ) · τ(e, t) + ρ · Q
1+q(sbest)

if Abest(e) = t

(1− ρ) · τ(e, t) otherwise,

where Q is a parameter controlling the amount of pheromone laid down by the
update rule, and the function q measures the quality of a solution s as the sum
of hard constraint violations hcv and soft constraint violations scv:

q(s) := # hcv(s) + # scv(s) .

The parameters for the algorithm described above were chosen after several
experiments on the given test problem instances and are reported in Table 2.

small medium large

m 15 15 10
τ0 0.5 10 10
ρ 0.1 0.1 0.1
α 1 1 1
β 3 3 3
γ 2 2 2
ψ 0.1 0.1 0.1

h(j)

{

5 000 j = 1
2 000 j ≥ 2

{

50 000 j ≤ 10
10 000 j ≥ 11

{

150 000 j ≤ 20
100 000 j ≥ 21

Q 105 1010 1010

Table 2. Parameters for the ACO algorithm.

4.3 Iterated Local Search

ILS [15] is based on the simple yet powerful idea of improving a local search
procedure by providing new starting solutions obtained from perturbations of
a current solution, often leading to far better results than when using random
restart [12, 15, 16, 18, 22]. To apply ILS, four components have to be specified.
These are a GenerateInitialSolution procedure that generates an initial solution s0,
a Perturbation procedure, that modifies the current solution s leading to some
intermediate solution s′, a LocalSearch procedure that returns an improved solu-
tion s′′, and a procedure AcceptanceCriterion that decides to which solution the
next perturbation is applied. A scheme for ILS is given below.

Algorithm 3 Iterated Local Search

s0 = GenerateInitialSolution()
s = LocalSearch(s0)
while termination condition not met do

s′ = Perturbation(s, history)
s′′ = LocalSearch(s′)
s = AcceptanceCriterion(s, s′′, history)

end while

In our implementation for the university course timetabling problem the
LocalSearch procedure was the common local search described in Section 3. Gen-

erateInitialSolution generates initial random solutions according to a uniform dis-
tribution, so that no problem-specific information is used. We implemented the
following three types of perturbation moves:

P1. choose a different timeslot for a randomly chosen event;
P2. swaps the timeslots of two randomly chosen events;
P3. choose randomly between the two previous types of moves and a 3-exchange

move of timeslots of three randomly chosen events.

All random choices were taken according to a uniform distribution. Each of these
different moves is applied k times, where k is chosen of the set {1, 5, 10, 25, 50, 100}.

Hence, it determines the strenght of the perturbation. The Perturbation is applied
to the solution returned by the AcceptanceCriterion.

We considered three different methods for accepting solutions in Acceptance-

Criterion:

Random Walk: This method always accepts the new solution s′′ returned by
LocalSearch.

Accept if Better: The new solution s′′ is accepted if it is better than s. This
leads to a first improvement descent in the space of the local optima.

Simulated Annealing: The new solution s′′ is always accepted if it is better
than the current one. Otherwise s′′ is accepted with a probability based on
the evaluation function f(s), but infeasible new solutions are never accepted
when the current one is feasible. f(s) is the number of hard constraint vi-
olations if both s and s′′ are infeasible, or the number of soft constraint
violations if they are both feasible. Two methods for calculating this proba-
bility were applied:

SA1. P1(s, s
′′) = e−

(f(s)−f(s′′))
T

SA2. P2(s, s
′′) = e

−
(f(s)−f(s′′))

T ·f(sbest)

where T is a parameter called temperature and sbest is the best solution
found so far. The value of T is kept fixed during the run, and it is chosen
from {0.01, 0.1, 1} for SA1 and {0.05, 0.025, 0.01} for SA2.

Finally we even considered applying ILS without LocalSearch. In this imple-
mentation, the Perturbation switched between moves P1 and P2. The values of
k tested were chosen from the set {25, 50, 100, 200}. This implementation is also
known as Reduced Variable Neighbourhood Search.

We ran all combinations of parameters for the small and medium instances
in an automated parameter tuning procedure, the racing algorithm proposed
by Birattari et al. [2]. This method, based on the Friedman statistical test,
empirically evaluates a set of candidate configurations discarding bad ones as
soon as statistically sufficient evidence is gathered against them. The instances
used in the race were generated with the problem instance generator described
in Section 2.2. The best resulting configurations of parameters for each instance
class are summarized as follows.

Small instances

Type of Perturbation: P1

k = 1
AcceptanceCriterion: SA2 with T = 0.025

Medium instances

Type of perturbation: P1

k = 5
AcceptanceCriterion: SA1 with T = 0.1

For the large instances the automated tuning would have required a very
large amount of time given the actual computational environment available.

Consequently the same parameter setting found for the medium instances is used
also for the large ones.

4.4 Simulated Annealing

Simulated Annealing is a local search inspired by the process of annealing in
physics [7, 14]. It is widely used to solve combinatorial optimization problems,
especially to avoid getting trapped in local optima when using simpler local
search methods [1]. This is done as follows: an improving move is always accepted
while a worsening one is accepted according to a probability which depends on
the amount of deterioration in the evaluation function value, such that the worse
a move is, the less likely it is to accept it. Formally a move is accepted according
to the following probability distribution, dependent on a virtual temperature T ,
known as the Metropolis distribution:

paccept(T, s, s
′) =

{

1 if f(s′) ≤ f(s)

e−
(f(s′)−f(s))

T otherwise

where s is the current solution, s′ is the neighbour solution and f(s) is the eval-
uation function. The temperature parameter T , which controls the acceptance
probability, is allowed to vary over the course of the search process.

We tackle the course timetabling problem in two distinct phases. In a first
phase only hard constraints are considered and reduced. When a feasible solution
is reached, which means no hard constraints are violated anymore, a second phase
starts and tries to minimize the number of soft constraints violations. Going
back from a feasible to an infeasible solution is not allowed. In the first phase
the evaluation function f is given by the number of hard constraints violations,
hcv, while in the second phase by the number of soft constraints violations, scv.

Algorithm 4 outlines the global procedure with the two phases Simultaed
Annealing, where Th is the temperature in the infeasible region, and Ts is the
temperature in the feasible region.

We implemented versions of Simulated Annealing that differ in the following
components: neighbourhood exploration strategy, initial temperature, cooling
schedule and temperature length. The different variants and different parameters
for these components have been object of an automated tuning for finding the
best configuration, using the same racing algorithm as described in Section 4.3.
The considered choices for the four components are the following.

Neighbourhood exploration We considered two strategy for generating a
neighboring solution:
1. Strategy 1 considers moves from neighbourhoods N1 and N2 in the same

order as in the local search outlined in Section 3.2. Only events in-
volved in constraint violations are considered. Yet, different from the
local search procedure, after trying all possible moves for each event of
the timetable, the algorithm does not end but continues with a different
order of events.

Algorithm 4 Simulated Annealing

input: A problem instance I
s← random initial solution
{Hard Constraints phase}
Th ← Th0;
while time limit not reached and hcv > 0 do

Update temperature;
s′ ← Generate a neighbouring solution of s
if f(s′) < f(s) then

s← s′;
else

s← s′ with probability p(T, s, s′) = e−
(f(s′)−f(s))

T

end if

sbest ← best between s and sbest
end while

{Soft Constraints phase}
Ts ← Ts0

while time limit not reached and scv > 0 do

Update temperature
s′ ← Generate a neighbouring solution of s
if hcv = 0 in s′ then

if f(s′) < f(s) then

s← s′

else

s← s′ with probability p(T, s, s′) = e−
(f(s′)−f(s))

T

end if

sbest ← best between s and sbest
end if

end while

output: An optimized solution sbest for I

2. Strategy 2 abandons the local search framework and uses a completely
random move selection strategy. At each step the proposed move is gen-
erated randomly from the union of N1 and N2.

Initial temperature Two possibilities were considered:
1. Use the temperature that provides a probability of 1/e for accepting a

move that worsens by 2% the evaluation function value of a randomly
generated solution sr. Formally, choose T such that

p =
1

e
= e−(

0.02·f(sr)
T

)

i.e. T = 0.02 · f(sr)
2. Sample the neighbourhood of a randomly generated initial solution, com-

pute the average value of the variation in the evaluation function pro-
duced by the sampled neighbours, and multiply this value by a given
factor to obtain the initial temperature. We fix the size of the sample to
100 neighbors.

Because the first method produce initial temperatures which does not scale
well with the hardness of the instances, the latter one is preferred. Two
different multiplier factors (TempFactHcv and TempFactScv) has to be con-
sidered in the tuning of the algorithm, one for the initial value of Th and the
other one for the initial value of Ts.

Cooling schedule We use a non monotonic temperature schedule realized by
the interaction of two strategies: a standard geometric cooling and a temper-
ature re-heating. The standard geometric cooling computes the temperature
Tn+1 in iteration n+1 by multiplying the temperature Tn in iteration n with
a constant factor α (cooling rate):

Tn+1 = α× Tn, 0 < α < 1

This schedule is expected to be competitive with the adaptive cooling as
proposed for the Graph Partitioning Problem by Johnson et al. [12] and
in many successful implementations for timetabling where parameters were
obtained by experimentations. A sort of adaptation to the behaviour of the
search process, however, is included in our implementation by re-heating the
temperature when the search seems to be stagnating. Indeed, according to a
rejection ratio given by the number of moves rejected on the number of moves
tested, the temperature is increased to a value equal to the initial one when
the ratio exceeds a given limit. This inspection is done every fixed number
of iterations, in our case three times the temperature length. Cooling rate
and rejection ratio are thus other parameters which need tuning; effectively
these are four parameters αh, αs, RejLimHcv, RejLimScv w.r.t. the phase
undertaken. For the sake of simplicity we fix αh = αs = α.

Temperature length The number of iterations at each temperature is kept
proportional to the size of the neighbourhood, as suggested by Johnson et
al. [13], who remarked that this seems to be necessary in order to obtain
high quality solutions. The rate of the neighbourhood size (NeighRate) is
another parameter to optimize. We keep it the same for the two phases.

SA in LS

NeighRate α TempFactHcv TempFactScv RejLimHcv RejLimScv

0.1 0.8 0.1 0.3 0.98 0.97
0.2 0.9 0.2 0.62

0.97 0.7

SA in LS with Fixed Temperature

NeighRate α TempFactHcv TempFactScv AccLimHcv AccLimScv

– – 0.1 0.05 – –
0.2 0.1

0.15
0.2
0.3

SA random

NeighRate α TempFactHcv TempFactScv AccLimHcv AccLimScv

0.1 0.8 0.1 0.3 0.98 0.97

0.2 0.9 0.2 0.62
0.95

Table 3. Simulated Annealing parameters for the three versions considered. NeighRate
is the proportion of the Neighbourhood examined at each temperature, α is the cooling
rate, TempFactHcv and TempFactScv are the multiplier factors for the initial temper-
ature, respectively for hard and soft constraints, AccLimHcv and AccLimScv are the
acceptance ratio limits respectively for the hard and the soft constraints loops.

0 500000 1000000 1500000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Temperature

iterations

te
m

pe
ra

tu
re

0 500000 1000000 1500000

0.
92

0.
94

0.
96

0.
98

Rejection ratio

iterations

re
je

ct
ed

0 500000 1000000 1500000

20
0

40
0

60
0

80
0

Soft Constraints Violations

iterations

S
cv

0 500000 1000000 1500000

0
10

0
20

0
30

0
40

0

Hard Constraints Violations

iterations

H
cv

Fig. 1. Behaviour of Simulated Annealing components over the search process in a run
of the best configuration found on a medium instance. We remark that we check the
rejection rate only every three times the temperature length.

Suggested by experimental observations we tested also a version of simulated
annealing in which the temperature is kept constant over the whole search pro-
cess. The idea is that the simulated annealing acceptance criterion is useful at
the end of the search for getting out from local optima, allowing the acceptance
of worsening moves. Therefore maintaining a certain probability of accepting
worsening moves during the whole search and above all during the end of the
process could produce competitive results with less effort for properly tuning the
parameters since in this case only the constant temperature needs to be consid-
ered. We tested this version using the first neighbourhood exploration strategy.

In all the cases the stopping criterion is the time limit imposed from the
experiments set up.

Table 3 summarizes the components and the values of the different parame-
ters that were tuned with the racing algorithm for the simulated annealing. The
70 different configurations tested in the race were generated from all the possible
combinations of these values.

The result of the race is that the best implementation, out of the three
described, for both the small and medium instances, is the simulated annealing
with complete random move selection. In Table 3 the values for the winning
configurations are indicated by italic face for the small instances and by bold
face font for the medium instances. As in the ILS case, the configuration proposed
for the large instances is the same used for the medium instances.

Figure 1 shows the behaviour over the search process for the temperature,
the acceptance ratio, soft constraints violations and hard constraints violations
of the best configuration found in a run on a medium instance. The behaviour
on small instances is similar.

4.5 Tabu Search

Tabu search (TS) is a local search metaheuristic which relies on specialized
memory structures to avoid entrapment in local minima and achieve an effective
balance of intensification and diversification. TS has proved remarkably power-
ful in finding high-quality solutions to computationally difficult combinatorial
optimization problems drawn from a wide variety of applications [1, 11]. More
precisely, TS allows the search to explore solutions that do not decrease the
objective function value, but only in those cases where these solutions are not
forbidden. This is usually obtained by keeping track of the last solutions in term
of the move used to transform one solution to the next. When a move is per-
formed the reverse move is considered tabu for the next l iterations, where l is
the tabu list length. A solution is forbidden if it is obtained by applying a tabu
move to the current solution.

The implementation of TS proposed for the university course timetabling
problem is described in the following. According to the neighbourhood operators
described in Section 3.2, a move is defined by moving one event or by swapping
two events. We forbid a move if at least one of the events involved has been moved
less than l steps before. The tabu status length l is set to the number of events
divided by a suitable constant k (we set k = 100). With the aim of decreasing

the probability of generating cycles and reducing the size of the neighbourhood
for a faster exploration, we consider a variable neighbourhood set: every move is
a neighbour with probability 0.1. Moreover, in order to explore the search space
in a more efficient way, tabu search is usually augmented with some aspiration
criteria. The latter are used to accept a move even if it has been marked tabu.
We perform a tabu move if it improves the best known solution.

The TS algorithm is outlined in Algorithm 5, where L denotes the tabu list.
In summary, it considers a variable set of neighbours and performs the best move
that improves the best known solution, otherwise it performs the best non-tabu
move chosen among those belonging to the current variable neighbourhood set.

Algorithm 5 Tabu Search

input: A problem instance I
s← random initial solution
L← ∅
while time limit not reached do

for i=0 to 10% of the neighbours do

si ← s after i-th move
compute fitness f(si)

end for

if ∃sj |f(sj) < f(s) and f(sj) ≤ f(si)∀i then

s← si

L← L ∪ Ei where Ei is the set of events moved to get solution si

else

s← best non tabu moves between all si

L← L ∪ Eb where Eb is the set of events moved by the best non-tabu move
sbest ← best solution so far

end if

end while

output: An optimized solution sbest for I

5 Evaluation

We tested the five algorithms on a PC with an AMD Athlon 1100 Mhz on
five small instances with running time 90 seconds, in 500 independent trials per
metaheuristic per instance; five medium instances with running time 900 seconds,
in 50 independent trials per metaheuristic per instance; and two large instances
with running time 9000 seconds, in 20 independent trials per metaheuristic per
instance.

The complete results of the experiments, the test instances and all the algo-
rithms can be found at http://iridia.ulb.ac.be/~msampels/ttmn.data.

Results for one instance of each class small and medium are summarized in
Figures 2 and 3. The results of all trials on a single instance are ordered by the
quality of the solution (number of soft constraint violations) and the rank of the
solution in all solutions. An invalid solution (with hard constraint violations)
is considered to be worse than any valid solution. Thus it is ordered behind

ACO GA ILS SA TS

0

5

10

15

20

25

30

Soft Constraint Violations

ACO

GA

ILS

SA

TS

500 1000 1500 2000 2500

Ranks

F
ig

.
2
.
R
esu

lts
fo
r
th
e
s
m
a
l
l
0
3
in
sta

n
ce.

ACO GA ILS SA TS

100

150

200

250

300

Soft Constraint Violations

ACO

GA

ILS

SA

TS

0 50 100 150 200 250

Ranks

F
ig

.
3
.
R
esu

lts
fo
r
th
e
m
e
d
i
u
m
0
1
in
sta

n
ce.

them. The solutions are grouped by the metaheuristic used. In the boxplots a
box shows the range between the 25% and the 75% quantile of the data. The
median is indicated by a bar. The whiskers extend to the most extreme data
point which is no more than 1.5 times the interquantile range from the box.
Outliers are indicated as circles.

Figures 4 and 5 show the results for the two large instances with additional
diagrams to report the distribution of the valid solutions and the percentage
of invalid solutions that were found in the 20 independent trials of each imple-
mented metaheuristics.

0 10 20 30 40 50

90
0

10
00

11
00

12
00

13
00

Instance: large01.tim Time: 9000 sec

Rank

S

of
t C

on
st

ra
in

t V
io

la
tio

ns

ACO
GA
ILS
SA
TS

ILS TS

900

1000

1100

1200

1300

Soft Constraint Violations

ACO

GA

ILS

SA

TS

0 10 20 30 40 50

Ranks

ACO GA ILS SA TS

Percentage of Invalid Solutions

Metaheuristic

P
er

ce
nt

0
20

40
60

80
10

0

Fig. 4. Results for the large01 instance.

In the following we give a few highlights and comments on the results on
each class of instances.

On the small instances all the algorithms reach feasibility in every run. ILS
generally performs best, followed closely by SA and ACO. GA is definitely worse,
but TS shows the worst overall performance.

SA is best on medium instances, even if it does not reach feasibility in some
runs. ILS is still very good and more reliable in terms of feasibility. GA and TS
give similar worse results, and ACO shows the worst performance.

For the first large instance large01 most metaheuristics do not even find
feasibility. TS reaches feasibility for about 8% of the trials, ILS for a bit more,
and, when it does, results for soft constraints are definitely better than the TS
ones. ILS is again best for the large02 instance, where it finds feasibility for

0 10 20 30 40 50 60 70

70
0

80
0

90
0

10
00

11
00

12
00

Instance: large02.tim Time: 9000 sec

Rank

S

of
t C

on
st

ra
in

t V
io

la
tio

ns

ACO
GA
ILS
SA
TS

ACO GA ILS TS

700

800

900

1000

1100

1200

Soft Constraint Violations

ACO

GA

ILS

SA

TS

0 10 20 30 40 50 60 70

Ranks

ACO GA ILS SA TS

Percentage of Invalid Solutions

Metaheuristic

P
er

ce
nt

0
20

40
60

80
10

0

Fig. 5. Results for the large02 instance.

about 97% of the trials against only 10% of ACO and GA. SA never reaches
feasibility, while TS gives always feasible solutions but with worse results than
ILS and ACO in terms of soft constraints.

The results presented here have to be read bearing in mind the context to
which they belong. Strong restrictions have been made on the implementations
of the metaheuristics, as the use of a single representation and a single search
landscape, and a minimal use of problem specific heuristics. The use of a different
representation, indirect and/or constructive, a different neighbourhood structure
and local search, or more freedom in the use of additional heuristic information
might give different results.

6 Conclusion

Based on the full set of results presented in the previous section, we can make
the following general conclusions, also confirmed by the analysis made in [8]:

1. problem instance difficulty varies (sometimes significantly) between prob-
lem instances, across categories, and to a lesser extent, within a category
(i.e. where all parameters to the generator except the random seed were
the same), in terms of the observed aggregated performance of the meta-
heuristics. This is what we had expected, and reflects real data, where some
specific problem (e.g. a particular choice of subjects by a particular student)
can make timetabling much more difficult in a particular year;

2. the absolute performance of a single metaheuristic varies (sometimes signif-
icantly) between instances, within and, to a lesser extent, across categories;

3. the relative performance of any two metaheuristics varies (sometimes signif-
icantly) between instances, within and, to a lesser extent, across categories;

4. the performance of a metaheuristic with respect to satisfying hard con-
straints and satisfying soft constraints may be very different.

These conclusions lead us to believe that it will be very difficult to design a
metaheuristic that can tackle general instances, even from the restricted class of
problems provided by our generator. However, our results suggest that a hybrid
algorithm consisting of at least two phases, one taking care of feasibility, the
other taking care of minimising the number of soft constraint violations, is a
promising research direction.

Additionally, we confirmed that knowing certain aspects of an instance does
not guarantee that we will know about the structure of the search space, nor
does it suggest a priori that we will know which metaheuristic will be best. This
suggests the importance, in future, of trying to measure the search space charac-
teristics directly; the aim here would be to try and match algorithms/parameter
settings based on measurements of these characteristics, so that some of the a

priori uncertainty of performance is removed.
This is ongoing work. In order to progress further in understanding these

problems we have organised an international competition [23] based on our gen-
erator. We hope that this will shed more light on these difficult problems. We
have also begun to analyse search space characteristics and relate these to meta-
heuristic performance.

Acknowledgments: This work was supported by the Metaheuristics Network, a
Research Training Network funded by the Improving Human Potential program
of the CEC, grant HPRN-CT-1999-00106. The information provided is the sole
responsibility of the authors and does not reflect the Community’s opinion. The
Community is not responsible for any use that might be made of data appearing
in this publication.

References

1. E. H. L. Aarts, J. K. Lenstra (eds.). Local Search in Combinatorial Optimization.
John Wiley & Sons, Chichester, 1997.

2. M. Birattari, T. Stützle, L. Paquete, and K. Varrentrapp. A racing algorithm for
configuring metaheuristics. Technical report, Intellektik, Technische Universität
Darmstadt, Darmstadt, Germany, 2002.

3. T. Baeck, D. Fogel, and Z. Michalewicz. Evolutionary Computation 1: Basic Al-
gorithms and Operators Institute of Physics, 2000.

4. E. Bonabeau, M. Dorigo, and G. Theraulaz. From Natural to Artificial Swarm
Intelligence. Oxford University Press, 1999.

5. E. K. Burke, M. Carter (eds.), The Practice and Theory of Automated Timetabling:
Selected Papers from the Second International Conference. Lecture Notes in Com-
puter Science 1408, Springer-Verlag, Berlin, 1997.

6. M. W. Carter and G. Laporte. Recent developments in practical course timetabling.
In [5]. 3–19, 1997.

7. V. Cerný. A Thermodynamical Approach to the Traveling Salesman Problem.
Journal of Optimization Theory and Applications, 45:41–51, 1985.

8. M. Chiarandini and T. Stützle. Experimental Evaluation of Course Timetabling
Algorithms. Technical Report, FG Intellektik, TU Darmstadt, 2002.

9. M. Dorigo and L. M. Gambardella. Ant Colony System: A cooperative learning
approach to the traveling salesman problem. IEEE Transactions on Evolutionary
Computation, 1(1):53–66, 1997.

10. M. Dorigo, V. Maniezzo, and A. Colorni. The Ant System: Optimization by a
colony of cooperating agents. IEEE Transactions on Systems, Man, and Cyber-
netics, 26:29–41, 1996.

11. F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, Boston et
al., 1998.

12. D. S. Johnson and L. A. McGeoch. The traveling salesman problem: A case study
in local optimization. In E. H. L. Aarts and J. K. Lenstra (eds), Local Search in
Combinatorial Optimization, New York, 215–310, 1997. John Wiley & Sons.

13. D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon. Optimization by
simulated annealing: an experimental evaluation; partI, graph partitioning. Oper-
ations Research, 37(6):865–892, November-December 1989.

14. S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi. Optimization by Simulated An-
nealing. Science, Number 4598(220):671–680, 1983.

15. H.R. Lourenço, O. Martin and T. Stützle Iterated Local Search In F. Glover and
G. Kochenberger (eds), Handbook of Metaheuristics, Volume 57 of International
Series in Operations Research & Management, 321–353, 2002, Kluwer Academic
Publishers.

16. O. Martin and S.W. Otto. Partitioning of unstructured meshes for load balancing.
Concurrency: Practice and Experience, 7:303–314, 1995.

17. B. Paechter, R. C. Rankin, A. Cumming, and T. C. Fogarty. Timetabling the
classes of an entire university with an evolutionary algorithm. Parallel Prob-
lem Solving from Nature (PPSN) V. Lectures Notes in Computer Science 1498,
Springer-Verlag, Berlin, 865–874, 1998.

18. L. Paquete and T. Stützle. Experimental investigation of iterated local search
for coloring graphs. In S. Cagnoni, J. Gottlieb, E. Hart, M. Middendorf and
G. Raidl (eds), Applications of Evolutionary Computing, Proceedings of EvoWork-
shops 2002. Lectures Notes in Computer Science 2279, Springer-Verlag, Berlin,
122–131, 2002.

19. P. Ross, D. Corne, and H. Fang. Improving evolutionary timetabling with delta
evaluation and directed mutation. In H. P. Schwefel, Y. Davidor, R. Manner (eds.),
Parallel Problem Solving from Nature(PPSN) III. Lectures Notes in Computer
Science, Springer-Verlag, 560–565, 1994.

20. O. Rossi-Doria, C. Blum, J. Knowles, M. Sampels, K. Socha, and B. Paechter. A
local search for the timetabling problem. In Proceedings of the 4th international
conference on the Practice And Automated Timetabling (PATAT 2002), Gent,
Belgium, 124–127, 2002.

21. A. Schaerf. A survey of Automated Timetabling. Artificial Intelligence Review,
13:87–127, 1999.

22. T. Stützle. Local search Algorithms for Combinatorial Problems – Analysis, Im-
provements, and New Applications. PhD thesis, TU Darmstadt, Germany, 1998.

23. http://www.idsia.ch/Files/ttcomp2002.

