
A comparison of the performance of different
metaheuristics on the timetabling problem

Olivia Rossi-Doria1, Michael Sampels2, Mauro Birattari3, Marco Chiarandini3,
Marco Dorigo2, Luca M. Gambardella4, Joshua Knowles2, Max Manfrin2,

Monaldo Mastrolilli4, Ben Paechter1, Luis Paquete3, Thomas Stützle3

1 School of Computing, Napier University,
10 Colinton Road, Edinburgh, EH10 5DT, Scotland
{o.rossi-doria, B.Paechter}@napier.ac.uk

2 IRIDIA, Université Libre de Bruxelles, CP 194/6,
Av. Franklin D. Roosevelt 50, 1050 Bruxelles, Belgium
{msampels, mdorigo, jknowles, mmanfrin}@ulb.ac.be

3 Intellektik, Technische Universitaet Darmstadt,
Alexanderstr. 10, 64283 Darmstadt, Germany

{mbiro, machud, lpaquete,

stuetzle}@intellektik.informatik.tu-darmstadt.de

4 IDSIA, Galleria 2, 6928 Manno, Switzerland
{monaldo, luca}@idsia.ch

1 Introduction

This work is part of the Metaheuristic Network?, a European Commission project
undertaken jointly by five European institutes, whose aim is to empirically com-
pare and analyse the performance of various metaheuristics on different combi-
natorial optimization problems including timetabling.

We attempt here an unbiased comparison of the performance of basic ver-
sions of five different metaheuristics on a timetabling problem using a common
search landscape for a fair and meaningful analysis. The timetabling problem
considered is a reduction of a typical university timetabling problem and is de-
scribed in [1], where a direct solution representation, a neighborhood structure
and a local search are also presented. The local search and neighbourhood struc-
ture restricted to neighbourhoods N1 and N2 provide a common basis for all the
metaheuristic implementations proposed here, where we introduced the maxi-
mum number of steps performed by the local search as a free parameter. More
precisely, we used the local search in an evolutionary algorithm, an ant colony
optimization algorithm, and an iterated local search. A simulated annealing, and
a tabu search were restricted to the same neighborhood structure. All the al-
gorithms use the same direct representation and are implemented in their basic
components in a straightforward manner. The stress here is in the comparison

? http://www.metaheuristics.net/



of the different methods under a common framework, rather than in high per-
formance. More freedom in the use of more efficient representations and more
heuristic information may give different results. In the following we give a brief
description of the general features of each metaheuristic under consideration and
of their implementations for the problem.

2 Evolutionary Computation

Evolutionary Algorithms (EA) are based on a computational model of the mech-
anisms of natural evolution. They operate on a population of potential solutions
and comprise three major stages: selection, reproduction and replacement. An
EA that uses local search to enhance its performance is called memetic algo-
rithm.

A simple implementation of a memetic algorithm for the timetabling prob-
lem is presented in the following: An initial population of candidate solutions
is constructed with random distribution and local search is applied to all its
members. At each generation only one couple of parent individuals reproduces
according to a steady-state evolution process. Each parent is selected with tour-
nament selection, where a number of individuals is chosen randomly from the
population and the best one wins the tournament. The reproductive operators
crossover and mutation are applied to the selected parents yielding a new child
individual. We define a uniform crossover on the given direct representation: each
assignment of timeslot to event is copied with uniform distribution from one or
the other parent, and the room assignment are taken care of by the matching
algorithm described in [1]. Mutation is just a random move in the extension to
N3 of the neighbourhood used by the local search. Each new child individual is
improved by means of the local search, then it replaces the worst member of the
population.

3 Ant Colony Optimization

Ant Colony Optimization (ACO) algorithms take inspiration from the foraging
behavior of real ants. The basic ingredient of ACO is the use of a probabilistic
solution construction mechanism based on stigmergy. The algorithm presented
here is the first implementation of an ACO to a timetabling problem and follows
the ACS version of ACO.

The basic principle of an ACS for tackling the timetabling problem is outlined
in the following: At each iteration of the algorithm, each of m ants constructs,
event by event, a complete assignment of the events to the timeslots. To make
a single assignment of an event to a timeslot, an ant takes the next event from
a pre-ordered list, and probabilistically chooses a timeslot for it, guided by two
types of information: (1) heuristic information, which is an evaluation of the
constraint violations caused by making the assignment, given the assignments
already made, and (2) stigmergic information in the form of a ‘pheromone’ level,



which is an estimate of the utility of making the assignment, as judged by previ-
ous iterations of the algorithm. The stigmergic information is represented by a
matrix of ‘pheromone’ values τ : E×T → R≥0, where E is the set of events and
T is the set of timeslots. These values are initialized to a parameter τ0, and then
updated by local and global rules; generally, an event-timeslot pair which has
been part of good solutions in the past will have a high pheromone value, and
consequently it will have a higher chance of being chosen again in the future.
At the end of the iterative construction, an event-timeslot assignment is con-
verted into a candidate solution (timetable) using the matching algorithm. This
candidate solution is further improved by the local search routine. After all m
ants have generated their candidate solution, a global update on the pheromone
values is performed using the best solution found since the beginning. The whole
construction phase is repeated, until the time limit is reached.

4 Iterated Local Search

Iterated Local Search (ILS) is based on the simple yet powerful idea of improving
a local search procedure by providing new starting solutions which are obtained
from perturbations of the current solution, leading to far better solutions than
if using repeated random trials of the local search. The local search is applied to
the perturbed solution and a locally optimal solution is reached. If it passes an
acceptance criterion, it becomes the new current solution; otherwise, one returns
to the previous current solution. The perturbation must be sufficiently strong
to allow the local search to explore new solutions, but also weak enough so that
not all the good information gained in the previous search is lost.

We considered different kinds of perturbations and acceptance criteria. Tun-
ing for the best configuration of different parameters has been done automati-
cally with the racing algorithm proposed by Birattari et al. [2]. This method is
based on the statistical test of Friedman and tries to eliminate configurations
that appear to be significantly worse than the current champion configuration.

We propose here the best performing ILS configuration. It uses as perturba-
tion a sequence of a certain number of random moves, where a move consists of a
choice of a different timeslot for a randomly chosen event. The moves considered
form the neighbourhood N1 which is a subset of the neighbourhood used by the
local search. The acceptance criterion is a simulated annealing type acceptance
criterion.

5 Simulated Annealing

Simulated Annealing (SA) is a variant of local search that allows some uphill
moves to avoid becoming trapped in a local optimum. This is done as follows: an
improving local search move is always accepted while a worsening local search
move is accepted according to a probability which depends on the relative dete-
rioration in the evaluation function value, such that the worse a move is, the less



likely it is to accept it. Formally a move is accepted according to the following
probability distribution, known as the Metropolis distribution:

paccept(T, s, s
′) =

{
1 if f(s′) < f(s)

exp
(
− f(s′)−f(s)

T

)
otherwise

where s is the current solution, s′ is a neighbour solution and f(s) is the eval-
uation function. The temperature parameter T , which controls the acceptance
probability, is allowed to vary over the course of the search process.

Different variants and different parameters for neighbourhood exploration
strategy, initial temperature, temperature length and cooling schedule have been
object of an automated tuning for finding the best configuration as in Sect. 4. We
describe in the following the resulting final implementation: The neighbourhood
is explored in a random way. The procedure is divided in two separate phases
as in the local search used by the other metaheuristics: a first loop for solving
feasibility and a second loop for improving soft constraints, when going back from
a feasible region to an infeasible one is not allowed. The initial temperature
is obtained by multiplying a given factor by the average of the variation in
the evaluation function produced by 100 neighbours of a randomly generated
initial solution. We used a non monotonic temperature schedule realized by the
interaction of two strategies: a standard geometric cooling and a temperature
re-heating. The standard geometric cooling computes the temperature, Tn+1 in
iteration n+1 by multiplying the temperature in iteration n, Tn, with a constant
factor α (cooling rate):

Tn+1 = α× Tn, 0 < α < 1.

A sort of adaptation to the behavior of the search process is included by re-
heating the temperature when the search seems to be stagnating. Indeed, ac-
cording to an acceptance ratio given by the number of moves rejected on the
number of moves tested, the temperature is increased to a value equal to the
initial one when the ratio exceed a given limit. This inspection is done every
fixed number of iterations, in our case three times the temperature length. The
number of iterations at each temperature is kept proportional to the size of the
neighborhood.

6 Tabu Search

Tabu search (TS) is a local search metaheuristic which relies on specialized
memory structures to avoid entrapment in local optima and achieve an effective
balance of intensification and diversification. More precisely, TS allows the search
to explore solutions that do not decrease the objective function value only in
those cases where these solutions are not forbidden. This is usually obtained by
keeping track of the last solutions in term of the move used to transform one
solution to the next. When a move is performed it is considered tabu for the



next N iterations, where N is the tabu status length. A solution is forbidden if
it is obtained by applying a tabu move to the current solution.

According to the given neighbourhood, a move for the timetabling problem
is defined by moving one event or by swapping two events. We forbid a move
if at least one of the event involved has been moved less than N steps before.
The tabu status length N is set to the number of events divided by a suitable
constant k (we set k = 100). With the aim of decreasing the probability of
generating cycles, we consider a variable neighbourhood set: every move is a
neighbour with probability 0.1. Moreover, in order to explore the search space
in a more efficient way, tabu search is usually augmented with some aspiration
criteria. The latter are used to accept a move even if it has been marked tabu.
We perform a tabu move if it improves the best known solution. To summarize,
the proposed TS considers a variable set of neighbours and performs the best
move that improves the best known solution, otherwise performs the best non
tabu move chosen among those belonging to the current variable neighbourhood
set.

7 Results

The presentation and full paper will include the results of the study and insights
into why certain metaheuristics perform better with problem instances with dif-
ferent characteristics. The analysis carried out should give us some guidelines
for the design of more sophisticated, and possibly hybrid, algorithms.

Acknowledgments: This work was supported by the “Metaheuristics Net-
work”, a Research Training Network funded by the Improving Human Potential
program of the CEC, grant HPRN-CT-1999-00106. The information provided
is the sole responsibility of the authors and does not reflect the Community’s
opinion. The Community is not responsible for any use that might be made of
data appearing in this publication.

References

1. O. Rossi-Doria, C. Blum, J. Knowles, M. Sampels, K. Socha, B. Paechter, A local
search for the timetabling problem, extended abstract in PATAT 2002.

2. M. Birattari, T. Stützle, L. Paquete, and K. Varrentrapp, A racing algorithm
for configuring metaheuristics, Technical report, Intellektik, Technische Universität
Darmstadt, Darmstadt, Germany, 2002.


