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Abstract. In this work we present a Genetic Algorithm for tackling
timetabling problems. Our approach uses an indirect solution represen-
tation, which denotes a number of instructions for a timetable builder
on how to sequentially build a solution. These instructions are composed
by a set of predefined heuristics. The ongoing work presented in this
abstract was started by the authors at the EvoNet summer school 2001.

1 Introduction

Timetabling problems are variants of the general resource allocation
problem where resources have to be allocated to certain tasks. A uni-
versity timetabling problem — as considered in this work — consists in
assigning each class from a set of classes to a suitable room and a times-
lot. Numerous metaheuristic algorithms have been proposed to tackle
this highly constrained problem. Among them are Simulated Anneal-
ing (SA) approaches (e.g., [1]), Tabu Search (TS) methods (e.g., [7]),
and quite a few approaches from the area of Evolutionary Computation
(EC) (e.g-, [3,2]).

The Genetic Algorithm (GA) presented in this work searches the space
of heuristic rules to be applied during a step—by—step construction of
a timetable. The idea of evolving instructions — composed by a set of
heuristic rules — for a construction mechanism to build solutions is in-
spired by the research on evolutionary algorithms for scheduling prob-
lems (e.g., [4, 5]). For scheduling problems, it resulted in very successful
algorithms, successful in terms of solution quality, but also in robustness
and flexibility.



2 Problem definition

The timetabling problem considered here is a reduction of a typical
university timetabling problem. A problem instance generator produces
problem instances with different characteristics for different values of
given parameters. The problem consists of a set of events E to be sched-
uled in 45 timeslots (5 days of 9 hours each), a set of rooms R in which
events can take place, a set of students S who attend the events, and a
set of room features F required by events. Each student attends a num-
ber of events and each room has a size. A feasible timetable is one in
which all events have been assigned a timeslot and a room so that the
following hard constraints are satisfied:

— no student attends more than one event at the same time;

— the room is big enough for all the attending students and satisfies

all the features required by the event;

— only one event is in each room at any timeslot.
In addition, a candidate timetable is penalized equally for each occur-
rence of the following soft constraint violations:

— a student has a class in the last slot of the day;

— a student has more than two classes in a row;

— a student has a single class on a day.

3 Owur approach

We chose to use the usual framework of a genetic algorithm for our ap-
proach. This means, our algorithm works on a population of individuals,
applying crossover (e.g., one—point or uniform crossover) and a simple
mutation operator to them. As a selection scheme we chose tournament
selection. In the following we outline the most important features of this
algorithm, namely the specification of individuals, the timetable builder
which takes an individual as input and produces a solution from it, and
the specification of the fitness function.

3.1 Individuals

In order to reduce the complexity of the timetabling process, we chose a
sequential approach. In this approach events are assigned consecutively
to a room and then to a timeslot. This requires |E| constructions steps,
each one consisting of (i) choosing an unprocessed event e € E, (ii)
assigning a room r € R to e, (iii) assigning the pair < e,r > to a timeslot.
Individuals consist of a three row matrix. For each one of the three steps
(i)—(iii) there are a number of priority rules available. The number of
columns in the matrix is equal to the number of events | E|. Position j in
the first row specifies the priority rule to choose for performing step (i) in
the jth construction step mentioned above (the choice of an unprocessed
event). Consequently, position j in the second row specifies the priority
rule for performing step (ii) in the jth construction step, and position j
in the third row specifies the priority rule for performing step (iii) in the
jth construction step.



3.2 Heuristic priority rules

A number of heuristic priority rules for steps (i)—(iii) have been devised.
For instance, for choosing a class to be processed next, priority can be
given to classes with a high number of students attending. The reason
for this is, that one would expect these classes to be problematic in the
sense that they are likely to produce clashes when there are parallel
classes (classes in the same timeslot). The following class choice priority
rules have been devised. Among the unprocessed classes, choose the class

1) that has the highest number of students attending,

2) that requires a room which is most required according to the set of
unprocessed classes.

For the assignment of a room to an already chosen event e, the following
rules were devised. Choose among the rooms of correct room—type the

1) smallest possible room,

2) the room with the lowest utilization rate in the partial timetable
(where the partial timetable is the current timetable that is under
construction).

Using any of these rules will assure that every event will take place in a
suitable room. So, these room assignment rules already take care of one of
the two possible types of hard constraints. For assigning an event—room
pair to a timeslot, we implemented the following priority rules. Choose
among the timeslots which would cause the lowest number of clashes the
one

1) which has the most parallel classes,

2) which has the most students attending a class in parallel.

In applying any of the rules above we use the following policy. If there are
ties, we always take the event, room, or timeslot with the lowest label.
This is done to make the process deterministic.

3.3 The timetable builder

Given an individual, the timetable builder can incrementally construct
a timetable in the following, deterministic way. For construction steps
j=1,..,|E| do:
— Choose an unprocessed class e € E using the rule specified in the j-th
position of the first row of the chromosome matrix.
— Assign class e to a room r using the rule specified in the j-th position
of the second row.
— Assign the pair < e,r > to a timeslot using the rule specified in the
j-th position of the third row.

3.4 The fitness function

The evaluation of a timetable consists of two stages. First of all, the
feasibility of a timetable is checked. A timetable is feasible if and only
if there are no violated hard constraints. Secondly, after feasibility has
been checked successfully, a preference for the timetable is calculated by
counting the number of soft constraint violations. This number is called
the score of the timetable. For use in an evolutionary algorithm, this



score is inadequate, because we also have to allow unfeasible timetables.
Therefore we chose the common approach of evaluating the fitness by
summing up the weighted number of hard and soft constraints. These
weights have to be carefully chosen.

4 Conclusions and outlook to the future

In this paper we have presented a Genetic Algorithm that evolves a policy
for a timetable builder to construct good timetables. The availability of
powerful heuristic priority rules is of crucial importance to our approach.
The extension of the set of heuristic rules, for instance by more smartly
using the features of the partial timetable, seems to be an obvious direc-
tion for future work. Also, the sequential construction mechanism, which
is fixed in its order, may not be optimal. Different orderings (a permuta-
tion of steps (i)—(iii) in Sec. 3.1) could be tested. We also plan to use the
local search method developed in [6] in a Lamarckian learning approach
to support our algorithm in finding good regions in the search space. We
will test these different extensions to the algorithm in the near future.
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