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Abstract - In this work we deal with the FOP
Shop scheduling problem which is a general schedul-
ing problem including Job Shop scheduling, Open
Shop scheduling and Mixed Shop scheduling as spe-
cial cases. The aim of this paper is to compare differ-
ent pheromone representations taken from the liter-
ature with our new approach. The pheromone repre-
sentations are used by an Ant Colony Optimization
algorithm to construct solutions to the FOP Shop
scheduling problem.

I. FOP Shop scheduling

Ant Colony Optimization (ACO) [5] is a recently pro-
posed meta-heuristic approach for solving hard combi-
natorial optimization problems. The inspiring source of
ACO is the foraging behavior of real ants. In this work we
compare different pheromone representations for ACO to
tackle instances of the general class of FOP Shop schedul-
ing problems. The class of FOP Shop scheduling prob-
lems (First Order Parallel Shop scheduling) — in the fol-
lowing called FOPSSP - was formulated in the course of
the Metaheuristics Network ! [1] as a generalization of
scheduling problems covering the well known Job Shop
scheduling problem (JSSP), the Open Shop scheduling
problem (OSSP) and the Mixed Shop Scheduling prob-
lem (MSSP) [9], [3]. An instance of the the FOP Shop
scheduling problem consists of the following elements:

e A set O = {o1,...,0n} of operations which is parti-
tioned into jobs J1,...,Jr. For o € O, we denote
o € J; by j(o) = 1.

o The partition of O into jobs is further refined to a
partition into groups Gi,...,G,. For a group G, we
denote G C J; by j(G) =i.

o O is partitioned into machines My, ...

s M.

1The Metaheuristics Network is a Research Training Network
funded by the Improving Human Potential program of the CEC.
The Network aims at the comparison of metheuristics on different
combinatorial optimization problems.

For

0 € O, we denote o € M; by m(o) =i. m(o) repre-
sents the machine on which an operation o has to be
processed. Its processing time is given by pt(o) € N.

o The groups of each job are totally ordered. If in
such an order a group G; is placed before a group
Gr, we write G; < Gr. The immediate predecessor of
a group G; is denoted by <preq (G;). The immediate
successor of a group G; is denoted by <suce (Gi)-
The order of groups within jobs induces precedence
constraints among the operations of jobs. For a pair
of operations o;, 0 with j(0;) = j(ox) holds: o; has
to be processed before oy, iff g(0;) < g(ok)-

The JSSP is a special case of the FOPSSP in the sense
that an instance of the JSSP can be considered as an
instance of the FOPSSP where each group contains only
one operation. The FOPSSP also covers all OSSP in-
stances in the sense that an OSSP instance can be treated
as a FOPSSP instance where the groups are identical
with the jobs. In Mixed Shop scheduling the set of jobs
decomposes into two disjoint subsets. In one subset the
jobs are handled as the jobs in Open Shop scheduling,
whereas in the other subset the jobs are handled as in
Job Shop scheduling. Therefore the FOPSSP also con-
tains the MSSP as a special case. As the JSSP, the OSSP,
and the MSSP are in general NP-hard problems, we can
also conclude that the FOPSSP is in general NP-hard.

An instance to any scheduling problem can be visual-
ized by the vertex weighted disjunctive graph represen-
tation for scheduling problems introduced by Roy and
Sussmann [11].

Definition 1: A vertex weighted disjunctive graph G is
a three-tuple (V, A, E) where V is a set of vertices, 4 a
set of directed arcs, and E a set of undirected edges. A
function f is given which assigns a weight f(v) € N to
every v € V.

For the FOPSSP the disjunctive graph G = (V, A, E)
is defined as follows. Every vertex v € V corresponds
to an operation o € O, and f(v) is defined as pt(o) of



Fig. 1. a) shows the disjunctive graph representation of a
simple instance of the FOPSSP with 3 jobs, 6 groups and
10 operations (processing times are omitted in this ex-
ample). The dashed and dotted links are the elements of
set E. The directed arcs between operations of successive
groups (set A) are simplified as inter-group connections.
b) shows a solution to the problem (the arcs of set E are
directed such that the resulting graph doesn’t contain any
cycles).

the corresponding operation (in the following we denote
the vertices by their operations). A, the set of directed
arcs, is defined as A = {(0;,0;) | 0i,0; € O, g(0;) =
<pred (9(0;))}, and E is the set of undirected arcs defined
by E = {(0i,05) | 0i,0; € O, g(0;) = g(0j) Vm(0;) =
m(o;)}.

Every solution to an instance of the FOPSSP can be
represented by a version of this graph where every arc
in F has been given a direction such that the resulting
directed graph is acyclic. By giving directions to the
arcs in E we specify processing orders for the operations
in groups and on machines. The value (or quality) of a
solution is equivalent to the length of the longest path
in G (where the length of the path is defined as the sum
of the processing times of the operations on this path).
This value is often called the minimum makespan. See
Fig. 1 for an example.

II. The ACO algorithm for the FOPSSP

In this section we outline the framework of our ACO
algorithm for the FOPSSP. Our aim was not to produce
a highly sophisticated algorithm with a lot of parameters
to tune. We rather wanted to define a simple ACO
algorithm as a framework for the comparison of different
pheromone representations. The basic framework of our
algorithm is shown in Alg. 1. Below all the components
of this algorithm are being explained. In algorithm 1,
7 = {n,...,} is a set of pheromone values, k is the
number of ants, and s/ are solutions to the problem (or-
dered lists of all the operations), constructed by the ants.

InitializePheromoneValues(7): In every version of our
algorithm we initialize all the pheromone values to the
same positive constant value.

Fig. 2. An ant walk from source to sink for the example
presented in Fig. 1. This ant walk orders the operations as
follows: 1-0-3-5-4-7-8-9-2-6. This order implicitly defines
orders in groups (1-0, 5-4-6, 8-9) and on machines (0-4-7,
1-3-8, 2-6, 5-0). This means that the ant walk in this
figure defines the direction of the arcs of the disjunctive
graph representation as shown in Fig. 1b)

ConstructSolution(7): To tackle the FOPSSP with an
ACQ algorithm we have to define the constructive heuris-
tic to be used in a probabilistic manner to construct so-
lutions to the problem. In ACO algorithms artificial ants
construct a solution by building a path on a construction
graph G. = (C, L) where the elements of the set C (called
components) and the elements of the set £ (called links)
are given for the Fop Shop scheduling problem as follows:

cC =
L

ou {Usom"ceavsink}
{(Oiaoj) | 0,05 € 0} U {(Usourceaoi) | 0; € O}
U {(0i,vsink) | 0; € O}

Note that all links in £ are directed. This graph
is basically the fully connected graph of operations
plus a source node (and arcs from the source node to
every operation) and a sink node (and arcs from every
operation to the sink node).

To build a solution an ant starts in the source node
and traverses the graph G, visiting every node exactly
once, finishing in the sink node. This corresponds to
building a permutation (or an ordered list) of all the
operations which uniquely defines the processing orders
of the operations in groups and on machines (see Fig. 2).
Not every possible path of the kind mentioned above
corresponds to a feasible solution (some paths might
result in solutions where precedence constraints are

Algorithm 1 ACO for the FOPSSP

InitializePheromoneValues(7)
while termination conditions not met do
for j =1to k do
89 + ConstructSolution(7)
end for
ApplyOnlineDelayedPheromoneUpdate(r,s',...,s*)
end while




violated, which corresponds to having cycles in the
directed version of the disjunctive graph representation).
To avoid generating unfeasible solutions we use a list
scheduler algorithm to restrict the set of operations
the ant is allowed to walk to in the next step. A well
known member of the class of list scheduler algorithms
is the heuristic proposed by Giffler and Thompson [6].
List scheduler algorithms generate an ordered list of all
the operations of a problem instance in a step-by-step
manner from left to right. In every step a subset of the
yet unscheduled operations is generated, which when
scheduled at that point keep the partial schedule feasible.
Then, to some criteria, one of these operations is chosen
and appended at the end of the list of already scheduled
operations. List scheduler algorithms (depending on the
criteria mentioned above) produce active or non-delay
schedules. Algorithm 2 shows the ant construction phase
using the above mentioned mechanism of a list scheduler
algorithm to restrict the set of operations where the
ant is allowed to go in the next step. It remains to

Algorithm 2 Ant construction phase
t=1
Ant is placed on vgyyrce Of graph G,
s = empty list with n positions (n being the number
of operations)
J¢ = {0; | g(0;) doesn’t have a predecessor}
for t =1ton do
Choose of € J; to probability p(o}|s,t)
Ant moves to operation o}
s[t] = of
if {o; € J; | 9(0;) =
exists then
Jen = T\ (0T} U{0) | 0] € <suce (9(07))}
else
Jivr = J \ {07}
end if
end for
Ant moves to vgipny of graph G,

9(0:)} =0 AND <,ucc (9(0:))

be specified how the probabilities to choose the next
operation from the set of operations provided by the list
scheduler mechanism are generated. This is dependent
on the pheromone representations which are outlined in
the following section.

ApplyOnlineDelayedPheromoneUpdate(r,s',...,s*):  We
implemented our ACO algorithm in the hyper-cube
framework introduced by Blum et al. [2]. For a set of
pheromone values {1, ..., 7, } in ACO algorithms we have

a pheromone updating rule looking usually like that:
k .
—p) -+ Y AT (1)
j=1

where

Aszi _ { 5(5-7)

if s7 contributes to ; @)
otherwise

where A* 7; is the contribution of a solution s? to the up-
date for pheromone value 7; (k is the number of solutions
used for updating the pheromones), p is the evaporation
rate (a small positive constant), and f is function (it usu-
ally maps the quality of a solution to its inverse). In the
hyper-cube framework a normalization of the contribu-
tion of every solution used for updating the pheromone
values is done in the following way:

k
“(l=p)mitp Y AV 3)
j=1
where
AT { % if s7 contributes to 7; @)
(2 I=
0 ' otherwise

where we multiply the normalized sum of contributions
with the evaporation rate p. This formula can be refor-
mulated as:

Ti ¢ Ti + Zf (s7) -0(s%, ) =7 (5)
Zl 1 j=1
where
- 1 if s7 contributes to 7;
J . — 2
o(s’,m) = { 0 otherwise (6)

This leads to a scaling of the objective function values
and the pheromone values are implicitly limited to the
interval [0, ..., 1] (see [2] for a more detailed description).
The exact updating rules are dependent on the different
pheromone representations and are outlined in Sec. IV.

ITI. Different pheromone representations

There are a number of design decisions to be made
when developing an ACO algorithm to tackle a combi-
natorial optimization problem. One of the most crucial
choices is the modeling of the set of pheromones. For
the TSP for example it is a fairly obvious choice to
put a pheromone value on every link between a pair of
cities. For other combinatorial optimization problems



the choice is not as obvious as for the TSP (see [10] for
an example of different models for MAX-SAT). Often
this problem can be stated as the problem of assigning
pheromone values to the decision variables themselves
(first order pheromone values) or to subsets of decision
variables (higher order pheromone values). In the
following we present four different pheromone represen-
tations, three of them from the literature, and a new one.

Learning of absolute positions in s: This first
pheromone model (henceforthPH,ps) is the most simple
choice of a pheromone representation and can be re-
garded as a standard in permutation type problems. To
every operation o; € O and every position i in list s we
have associated a pheromone value 7, ;. The probabili-
ties p(ojls,t) for the operations in set J; of the ant con-
struction phase to be chosen by the ant (called transition
probabilities) are determined as follows:

ch,t
T
Zokeh Okt

0 :  otherwise

if 0; € Ji

where s is the ordered list of operations scheduled so
far (the partial schedule constructed so far), and J;
is the set of operations allowed to be scheduled next
(see Alg. 2). With this pheromone representation the
algorithm tries to learn absolute positions of operations
in s.

Learning of absolute positions in s plus sum-
ming evaluation: The pheromone model in this case
(henceforth PHg,n) is the same as in learning absolute
positions, except that the evaluation of the transition
probabilities p(oj|s,t) is different. It was introduced in
[7] and further tested in [8]. The transition probabilities
p(oj|s,t) are:

>
1=1 7050t
Deren 2
-
oR€Jt 1=1"°k!

if 05 € Ji
otherwise

where s and J; are as described above. In this way
of pheromone evaluation, if an operation is by some
stochastical error not placed at a position in s where it
should have been placed, the probability remains high
to schedule it closely afterward.

Learning of a predecessor relation in s: This
pheromone model (henceforth PHg,.) was introduced by
Colorni et al. [4] for an Ant System to tackle the Job Shop
scheduling problem. In the following the simple exten-
sion of this model to the Fop Shop scheduling problem
is outlined. In this model we have a pheromone value
To:,0; ON every pair of operations 0;,0; € O and we have

pheromone values 7, ,....0;, Yo; € O. The transition
probabilities p(o;|s,t) are determined as follows:

Tvsource,2j

§ :"kEJt T”scm'r*ce)ﬂk
Tci,oj

Enke.]t Toi.op

0 : otherwise

if o; € Jy,t =1

if oj € Jy,t > 1,s[t — 1] = o;

where s and J; are as described above. In this way
of modeling the pheromones in every step of the con-
struction phase the next operation to be scheduled is
dependent on the operations scheduled in the previous
step.

Learning of relations among operations: In
this new pheromone model (henceforth PH,) we assign
pheromone values to pairs of related operations. We call
two operations o;,0; € O related if they are in the same
group, or if they have to be processed on the same ma-
chine. Formally, a pheromone value

Toi0; exists, iff g(o;) = g(oj) or m(o;) =

m(o;)

The meaning of a pheromone value 7,, o, is, that if 7, ,,
is high then operation o; should be scheduled before op-
eration 0;. The choice of the next operations to schedule
is handled as follows. If there is an operation o; € J; with
no related and unscheduled operations left, it is chosen.
Otherwise we choose among the operations of set J; with
the following transition probabilities p(o;|s, t):

min, egrel Toj,on

- if o;€J;
EnkEJt iR, es7el Top or !
0 : otherwise
where s and J; are as described above, and
Spt = {or € O | m(or) = m(oj) V glox) =

g(éj), o, not scheduled yet}. The meaning of this rule to
compute the transition probabilities is the following: If at
least one of the pheromone values between an operation
0; € J; and a related operations o, (not scheduled yet) is
low, this means that operation o; probably shouldn’t be
scheduled now. By using this pheromone model the al-
gorithm tries to learn relations between operations. The
actual position of an operation in the ordered list s is
not important anymore. It is the relative position of an
operation with regard to the related operations.

IV. Pheromone update

As mentioned above, our ACO algorithm is imple-
mented in the hyper-cube framework [2]. Therefore we
get the following pheromone updating rules. For PH,ps

and PHgym:
Toi,j € Toij + (Z f(87) - (8", 7o,,5) — To J)
El 1 ( r=1



for 4,7 = 1,...,n, the evaporations rate p > 0, and where
0(s",7;,5) = 1if s"[j] = 0; and §(s", 7,,,;) = 0 otherwise.
For PHg,c the pheromone updating rule is as follows:

Toio; €

Toi,o; T (Zf 6(s", Toi,0;) _TOi,oJ‘>
El 1 r=1

for i,j = 1,...,n and where 6(s",7,,,;) = 1 if s[l] = o;

and s[l+1] = o; foronel € [1,...,n—1] and §(s", 7o, 0,) =
0 otherwise. In the same way the pheromone update is
done for all pheromones 7,,,,,..,o; for j = .,,n and
where (s(vsom"ce; Oj) =1if 3[1] = 0j and 6(Usou7'ce7 Oj) =0
otherwise.

For PH,e the pheromone updating rule is as for PHg,c,
except that we only have pheromones for o; and o; re-
lated. In PHe, 6(s",7,;,0,) = 1 if 0; is placed before o;
in 8", 6(s",70;,0,) = 0 otherwise. This way of generat-
ing the transition probabilities favors operations among
those to be scheduled next for which the minimum of the
pheromones to unscheduled related operations is maxi-
mal. In other words, if there is an operation among the
candidates where this minimum is quite low, this means
that there is at least one related operation which should
be scheduled before.

V. Comparison

We were running experiments of our ACO algo-
rithm for all four pheromone representations on several
FOPSSP instances. The results are consistent over the
whole set of problem instances tested. Due to space lim-
itations we restrict ourselves to present only the results
for the biggest problem tested. This problem instance is
called whizzkids97.fss and consists of 197 operations. It
was provided by the TU Eindhoven where it was subject
of a competition held in 1997. For all 4 pheromone rep-
resentations we were running experiments for a range of
evaporation rates in order to find the best evaporation
rate for every pheromone representation. A summary of
the results of these experiments is shown in Fig. 3 (best
values for p for all pheromone representations). Results
for all tested values for p are shown in Fig. 4 separately
for all pheromone representations. There are several ob-
servations worth to be mentioned. First of all, our new
pheromone representation PH, shows a clear advantage
over the other three pheromone representations. Further
on, PH,ps, PHgyc and PHgym show (for most evaporation
rates) a decrease in performance at least at the begin-
ning of the search. A reason for this decrease in perfor-
mance might be, that the problem model introduced by
these pheromone representations makes good solutions
very fragile, which drives the algorithm initially to bad
solutions. For instance, we noticed that the algorithm

using PHg,c learns to process all operations in a job be-
fore dealing with operations of another job. This could
be caused by learning successor relations in the permu-
tation of operations, which sometimes results in learning
relations between operations which are not related at all
(neither in the same group, nor on the same machine).
On the smaller problem instances tested (results are not
reported here), the summing evaluation PHgym, is improv-
ing pheromone representation PH,ps. This is not the case
for whizzkids97 .fss. For PHg,m (on whizzkids97.fss) we ob-
serve some learning for evaporation rates 0.001 and 0.01
though, which is not the case for PH,ps. Therefore we
might expect PHg,m to be better than PH,,s when in-
creasing the number of iterations.

VI. Conclusions and outlook

In this work we compared three pheromone repre-
sentations from the literature with a new pheromone
representation for ACO algorithms to solve FOPSSPs, a
quite broad class of scheduling problems. We observed
that using the new pheromone representation which
leads to a learning of precedence relations between
related operations is — on the problem instances chosen
— resulting in a clearly improved performance in con-
trast to the known pheromone representations. This
means that it doesn’t seem beneficial to use an ACO
algorithm solving a scheduling problem which is trying
to learn either absolute positions in an ordered list
of all operations, or learning predecessor relations in
this ordered list. It is rather more beneficial to learn
relative positions with regard to related operations,
which is what is done in PH,y. In the future we want
to investigate why the performance of the algorithm
especially with the pheromone representation PHg,c
is strongly decreasing at the beginning of the search
process. Another aim for the future is to extend the
numerical results and to particularly focus on JSSP,
OSSP and MSSP instances, which are special cases of
the FOPSSP.
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