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Abstract

Exact algorithms like Branch-and-Bound or Dynamic Programming and local search tech-
niques are traditionally seen as being two general but distinct approaches for the effective
solution of combinatorial optimisation problems, each having particular advantages and dis-
advantages. It is only rather recently that true hybrid algorithms, which take ideas from both
fields, have been proposed. In this article we present the main underlying ideas behind cur-
rently explored such combinations, illustrating them with examples from the literature, and
we give a classification of the available combinations. Our main focus here is on algorithms
that have the main framework given by the local search and use exact algorithms to solve
subproblems.
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1 Introduction

Many real-life problems, arising in airline scheduling, production planning, location and dis-
tribution management, Internet routing, and many other areas are combinatorial optimisation
problems (COPs). COPs are intriguing because they are often easy to state but often very diffi-
cult to solve, which is captured by the fact that many of them are AP-hard [33]. This difficulty
and, at the same time, their enormous practical importance, have led to a large number of solution
techniques for them. The available solution techniques can be classified into two main classes:
exact and approximate algorithms. Exact algorithms are guaranteed to find an optimal solution
and prove its optimality for every finite size instance of a COP within an instance-dependent,
finite run-time, or prove that no feasible solution exists. If optimal solutions cannot be computed
efficiently in practice, the only possibility is to trade the guarantee of optimality for efficiency. In
other words, the guarantee of finding optimal solutions can be sacrificed for the sake of getting
very good solutions in reasonably short time by using approximate algorithms.

Two solution method classes that have significant success are Integer Programming (IP)
methods, as an exact approach, and local search and extensions thereof, often called meta-
heuristics or stochastic local search [44], as an approximate approach. IP methods rely on the
characteristic of the decision variables of being integers. Some well known IP methods are
Branch-and-Bound, Branch-and-Cut, Branch-and-Price, Lagrangean Relaxation, and Dynamic
Programming [62]. In recent years, remarkable improvements have been reported for IP meth-
ods when applied to some problems (see for example [7] for the TSP). Important advantages of
exact methods for IP are that (i) proven optimal solutions can be obtained if the algorithm suc-
ceeds, (ii) valuable information on the upper/lower bounds on the optimal solution are obtained
even if the algorithm is stopped before completion (IP methods can become approximate if we
define a criterion of stopping them before solving the problem), and (iii) IP methods allow to



provably prune parts of the search space in which optimal solutions cannot be located. A more
practical advantage of IP methods is that very good research code like Minto [76], or power-
ful, general-purpose commercial tools like CPLEX [45], which often reach astonishingly good
performance, are available. However, despite the known successes, exact method have also a
number of disadvantages. Firstly, for many problems the size of the instances that are practi-
cally solvable is rather limited and the computational time increases strongly with the instance
size. Secondly, the memory consumption of exact algorithms can also be very large and lead to
the early abortion of a programme. Thirdly, for many COPs the best performing algorithms are
problem specific and they require large development times by experts in integer programming.
Finally, high performing exact algorithms for one problem are often difficult to extend if some
details of the problem formulation change. The state-of-the art for IP algorithms is that for some
problems huge instances can be solved very fast, while for other types of problems even small
size instances cannot be solved at all.

Local search is the most successful class of approximate algorithms. When applied to hard
COPs, local search yields high-quality solutions by iteratively applying small modifications (lo-
cal moves) to a solution in the hope of finding a better one. Embedded into higher-level guidance
mechanisms like metaheuristics, this approach has been shown to be very successful in achieving
near-optimal (and sometimes optimal) solutions to a number of difficult problems [1, 44, 82]. Ex-
amples of well-known metaheuristics are simulated annealing, tabu search, memetic algorithms,
or iterated local search [37]. Advantages of local search methods are that they (i) are the best
performing algorithms that are used in practice for a large number of problems, (ii) can examine
an enormous amount of possible solutions in short computation time, (iii) are often more easily
adapted to slight variants of problems and, thus, are more flexible, and (iv) are typically easier
to understand and implement than exact methods. However, local search based methods have
several disadvantages. Firstly, they cannot prove optimality. Secondly, they typically cannot
provably reduce the search space. Thirdly, they do not have well defined stopping criteria (this
is particularly true for metaheuristics). Finally, local search methods often have problems with
highly constrained problems where feasible areas of the solution space are disconnected. An-
other problem that occurs in practice is that there are no efficient general-purpose local search
solvers available. Hence, most applications of local search algorithms often require considerable
programming efforts, although often less than for special purpose exact algorithms.

It should be clear by now that IP and local search approaches have their particular advantages
and disadvantages and can be seen as complementary. Therefore, it appears to be an obvious idea
to try to combine these two distinct techniques into more powerful algorithms.

However, most articles present rather trivial combinations of local search and integer pro-
gramming techniques. These combinations consist of a straightforward two phase approach
where in a first stage a method from one class is used and in a second stage a method from the
other class is run. In the case of a minimisation problem, the simplest example is the use of
a local search algorithm to compute lower bounds that allow an early pruning of non-optimal
solutions. Intuitively however, one would expect more advanced combinations of exact and local
search methods to result in even stronger algorithms.

Therefore, in this article we will focus on approaches that strive for an integration of IP and
local search techniques. Examples of methods that are not the focus of this article are prepro-
cessing and bound propagation.

In this paper we will describe ways of integrating local search and IP methods (or methods
derived from an IP approach) that have been proposed so far. We will be looking for approaches
that, although rooted in one of the areas, take a significant portion of the other one. In fact
this goal is also reflected in the selection of the research directions that are described; we will
describe in some detail methods that, in our opinion, open new directions of research and put
forward ideas that can easily be applied to new problems. The link between the approaches we
consider in this paper is that, given an integer programming problem, a local search technique is
applied to the problem to solve and an exact algorithm to some subproblems that arise during the



solution process. At least one of the local search or exact methods is applied more than once.
We classify the available combined algorithms in five groups. These groups contain methods
that

1. use exact algorithms to explore large neighbourhoods in local search algorithms;

2. perform several runs of a local search and exploit information in high quality solutions to
define smaller problems that are amenable for solution with exact algorithms;

3. exploit lower bounds in constructive heuristics;

4. use information from relaxations of IP problems to guide local search or constructive al-
gorithms;

5. use exact algorithms for specific procedures in hybrid metaheuristics.

For each of these groups, we will describe the general framework and give one or several
detailed examples. We will then conclude each section with a short discussion and refer to other
algorithms that belong to the group or use the same general idea. We finish the paper with a
summary of the main points discussed and some conclusions.

Before proceeding with our discussion we need to clarify the notion of solution component
and decision variable that we will use in our paper. We explain what we mean by using the
example of the symmetric Traveling Salesman Problem (TSP). The TSP can be defined on an
undirected graph G = (V, E), where V is the set of nodes and E the set of edges. An edge
represents a pair of nodes between which travel is possible. Every edge {4, j} has an associated
cost d;; and the goal in the TSP is to find a Hamiltonian cicrcuit of minimal length.

When applying local search to the TSP, a solution component usually refers to a single edge
in a tour; each tour contains exactly n such solution components. More generally, a solution
component can be seen as an atomic item and a set of such atomic items defines a problem
solution. The analogue to a solution component in IP formulations is the notion of decision
variable. For example, in the usual IP formulations of the TSP (see [62] for an overview), a
variable z;; € {0,1} is associated with each edge {7, j}. The variable z;; is equal to 1, if
the edge {7, j} is included in a tour and zero otherwise. The z;; variables are called decision
variables. In the following sections, if we say that a decision variable is fixed to one (zero), we
mean that we consider only those solutions in which this variable is set to one (zero); analogously,
in the local search case we say that a solution component is forced to always occur (hot occur) in
any solution considered. In the case of the TSP, this corresponds to an edge always (never) being
used in any of the solutions considered. If a variable is free, this means that it can take any value
in {0,1}.

2 Exploring the neighbourhood

Given a current solution S, local search explores the neighbourhood N'(S) of S iteratively and
tries to replace S by a solution S’ € A/(S) according to some criterion. The first combination
of local search and exact algorithms that we consider uses exact algorithms for finding a best
improving neighbouring solution S efficiently. Such a combination has proved successful, es-
pecially in cases where the number of neighbouring solutions can be exponentially large with
respect to the instance size.

2.1 Framework

In local search, it is appealing to search large neighbourhoods because much better solutions can
be reached in one local search step than when simple, small neighbourhoods are used. However,
large neighbourhoods have the associated disadvantage that a considerable amount of time may



be spent to search them in order to find an improved or the best neighbouring solution. More
than that, many of the large neighbourhoods proposed in the literature are exponentially large
with respect to instance size [36, 49, 67, 80, 81]. Hence, the bottleneck for local search in large
neighbourhoods is the task of searching for a better or the best solution in the neighbourhood.

The central idea of algorithms that combine local search and exact methods in this case is
to model the problem of searching a large neighbourhood as an optimisation problem, which is
then solved exactly. The solution of this problem will determine the neighbour that will replace
the current solution in the local search.

For this task, two main possibilities can be considered. The first one is to model the ex-
ploration of the full neighbourhood as an optimisation problem. In this case, a search problem
is defined such that each feasible solution of it induces a move of the local search algorithm.
Clearly, the task of the exact algorithm in this case will be to solve the resulting neighbourhood
search problem (NSP). A general algorithmic outline of this combination method can be given
as follows:

Algorithm 2.1 Neighbourhood search

Step 1: Initialisation
Let S be a feasible initial solution.
Step 2: Local search
while stopping criterion is not met do
Define a search problem P(.S) that depends on S.
if P(S) is infeasible then go to Step 3.
else Find opt(P(S)), the optimal solution of P(5).
Perform the move induced by opt(P(S)). Let S’ be the solution obtained.
if S’ is better than S w.r.t. the objective functionthen S = S".
enddo
Step 3: Return S.

The first two examples that we present, Very Large Scale Neighbourhood Search and Dynasearch,
fall in this class of NSP hybrids.

The second possibility is that at each step of the local search only a part of the full neigh-
bourhood is examined. This is typically done by keeping a part of the current solution .S, which
defines a partial solution, while the values of the rest of the decision variables are left free. The
free part is then rearranged optimally, subject to the constraint that the fixed part cannot be al-
tered. In this sense, the task of the exact algorithm is to solve the partial neighbourhood search
problem (PNSP). The following algorithmic outline gives a high level view of such a procedure,
in the case of an iterative improvement algorithm that only accepts better neighbouring solutions
and, hence, stops in the first locally optimal solution encountered.

Algorithm 2.2 Partial neighbourhood search

Step 1: Initialisation
Let S be an initial solution.
Step 2: Neighbourhood search
whilei nprovenment found do
Step 3: Neighbourhood scan
while not full neighbourhood examined do
Delete part of the solution S such that a partial solution is obtained: S, = S\ R.
Define a search problem P(R).
Find opt(P(R)), the optimal solution of P(R).
Perform the move induced by opt(P(R)). Let S’ be the solution obtained.
S'=5,uS"



Figure 1: Example of a cyclic exchange for a partitioning problem.

if S’ is better than S w.r.t. the objective functionthen S = S".
enddo
enddo
Step 4: Return S.

We illustrate the partial neighbourhood search principle on the Hyperopt local search algorithm;
in fact, Hyperopt is only one recent example of such methods, which can be traced back to
Applegate and Cook’s shuffle heuristic [10].

2.2 NSP Example: Very Large Scale Neighbourhood Search Methods

One application of NSP is the Very Large Scale Neighbourhood (VLSN) search that was intro-
duced by Ahuja et al. [5, 6] in the context of solving partitioning problems, a large and difficult
class of problems. Examples of partitioning problems are Vehicle Routing, Capacitated Mini-
mum Spanning Tree, Generalised Assignment, Parallel Machine Scheduling, Clustering, Aggre-
gation, and Graph Partitioning Problems. Next, we will briefly describe the type of problems to
which VLSN search is applied and how the neighbourhood search problem is defined.

As mentioned before, VLSN search applies to partitioning problems [6]. Given a set W
of n elements, a partition 7 of W is sought, where 7 is defined to be a set of subsets of W,
T ={T,...,Tx}suchthat W =Ty U---UTgand T, N Ty = 0, k, k' =1,..., K. A
cost ¢ (T} ) is associated with any set T%. The partitioning problem seeks the partition of W that
minimises the sum of the costs of the subsets in the partition. Formally, the partitioning problem
can be defined as:

K
min ¢(T) = Z ek (Tk)
k=1
s.t. T is a partition of W.

The characteristics of the cost function are not important for the time being; the only property of
it that needs to be taken into consideration is its separability over subsets.

Frequently, partitioning problems are solved using local search algorithms that are in most
cases based on the two exchange neighbourhood. Cyclic exchange neighbourhoods are a gener-
alisation of the two exchange neighbourhood [6, 80, 81] instead of swapping only two elements
from two subsets, several elements, each belonging to a different subset, are moved (see Fig-
ure 1).

Formally, a cyclic exchange between & subsets (without loss of generality we can assume
them to be 71, . . ., T} and the elements we look at to be a4, . . . , ax, with a; € T;) is represented
by a cyclic permutation 7 of length k, = # 1, where 7(i) = j means that the element a; from
subset T; moves into subset 7;. We recall that a cyclic permutation is a permutation that has a



decomposition which consists of one single cycle. A partition 7" is said to be a neighbour of the
partition 7 if it is obtained from 7 by performing a cyclic exchange and feasible with respect
to some problem specific constraints. The set of all neighbours of 7 defines the cyclic exchange
neighbourhood of 7. The cyclic exchange modifies the sets of the partition and therefore their
cost. The cost difference for each subset will be the difference between the cost of the subset
before performing the cyclic exchange and the cost of the subset after the exchange. The cost of
the cyclic exchange is the sum of all the cost differences over all subsets in the partition.

In order to find the next move, Ahuja et al. define the improvement graph. The construction
of the improvement graph depends on the current feasible partition of the partitioning problem
considered. The set of nodes V' of the improvement graph is defined as the collection of inte-
gers 1,...,n, each corresponding to an element of the partition of W. The improvement graph
contains the arc (4, ) if the elements corresponding to 4 and j do not belong to the same subset
in 7 and the subset to which the element corresponding to j belongs remains feasible after the
removal of the element corresponding to j and the addition of the element corresponding to .
We define the partition ¢/ of V' to be the collection of subsets U, ..., Uk corresponding to the
subsets in 7T, i.e. the elements of T} are in one-to-one correspondence with the elements of Uy,
foreach k = 1,..., K. Therefore a subset disjoint cycle in the improvement graph, with respect
to U, will correspond to a cyclic exchange in 7. The arc (4, 7) will have an associated cost, equal
to the difference between the cost of the set after the removal of the element corresponding to j
and the addition of the element corresponding to ¢, and the cost of the original set that contains
the element corresponding to j. Thompson and Orlin [80] showed that there is a one-to-one
correspondence between the cyclic exchanges with respect to 7 and the subset-disjoint cycles in
the improvement graph (with respect to &/) and that both have the same cost.

The problem of finding the best neighbour within the cyclic exchange neighbourhood can be
modelled as a new problem, the Subset Disjoint Minimum Cost Cycle Problem (SDMCCP), or
in some cases the Subset Disjoint Negative Cost Cycle Problem (SDNCCP). The SDMCCP is
the problem of finding the minimum cost subset disjoint cycle (a cycle that uses at most one node
from every subset of the partition of the set of nodes) in the improvement graph. The SDNCCP
is the problem of finding a minimum subset disjoint cycle with the additional constraint that its
cost is negative. The only real difference between SDMCCP and SDNCCP is that the feasible
set of the latter is a subset of the feasible set of the former. Also note that if the network contains
negative cycles, then the set of optimal solutions of both problems is the same.

If SDNCCP has a solution, then this solution corresponds to an improvement in the solution
quality of the partitioning problem considered. Hence, the SDNCCP is the problem to be solved
when using VLSN in an iterative improvement algorithm. The SDMCCP is important if the
VLSN search technique is embedded, for example, into a tabu search procedure; then finding
the best neighbour may be important regardless of whether or not this neighbour is better than
the current solution. Ahuja et al. [3] solve the SDNCCP by a heuristic that takes advantage
of the fact that only negative cycles are needed. However they make no attempt to solve the
SDNCCP exactly. Several exact methods for both SDMCCP and SDNCCP are proposed by
Dumitrescu [29]. They can be viewed as generalisations of dynamic programming algorithms
commonly used for shortest path problems. In the case of the SDMCCP an acceleration method
that takes advantage of symmetry is given, and in the case of SDNCCP the author takes advantage
of an elegant theorem of Lin and Kernighan [50], which, as noted by Ahuja et al. [5], can be
used to accelerate solution. Although the SSDNCCP and SDMCCP are N'P-hard, the proposed
methods are very efficient for the subproblems that arise in practical applications of VLSN search
methods. Dumitrescu also proposes some heuristics that are derived from the exact methods by
limiting or truncating them in some way.

However, although research exists on both applying VLSN search to partitioning problems
and on solving the SDMCCP and SDNCCP that arise as subproblems, no work has yet been
done on the integration of the exact algorithms that solve the subproblems with the local search
framework. This needs to be investigated and implemented in the future.



2.3 NSP Example: Dynasearch

Dynasearch is another example of how an exact algorithm can be used to search an exponentially
large neighbourhood. The neighbourhood searched consists of all possible combinations of mu-
tually independent simple search moves. One dynasearch move consists of a set of independent
simple search moves that are executed in parallel in a single local search iteration. Independence
in the context of dynasearch means that the individual simple search moves do not interfere with
each other, especially with respect to the objective function; this means that the gain incurred by
a dynasearch move must be the sum of the gains of the individual simple search moves.

So far, Dynasearch has only been applied to problems where solutions are represented as per-
mutations. Independence between simple search moves is given if the last element involved in
one move occurs before the first element of the next move. This means, that if 7 = (7w (1),...,7(n))
is the current permutation, two moves involving elements from «(¢) to 7(j) and w(k) to = (1),
withl < i< j<nandl < k <1 < n are independent, if either j < k orl < i. If over-
lapping moves are not allowed, the best combination of independent moves can be found by a
straightforward dynamic programming algorithm.

Let A(j) be the maximum total cost reduction incurred by independent moves involving
only elements from position 1 to j of the current permutation and 4(, j) be the cost reduction
resulting from a move involving positions between ¢ and j, including ¢ and j. The maximum
total cost reduction is obtained either by appending 7 (j) to the current partial permutation or
by appending element () and applying a move involving element 7 () (and possibly elements
from 7 (i) onwards).

We assume that the current solution is given by 7 and set A(0) = 0 and A(1) = 0. Then,
A(j), 7 =1,...,n—1can, ingeneral, be computed in a forward evaluation using the following,
recursive formula:

AG+1) = max {AG—1) + 605 + D} @

The largest reduction in solution cost is then given by A(n) and the single moves to be
performed can be found by tracing back the computation steps. In order to apply dynasearch
using the forward evaluation, the value of A(j) should not depend on positions & > j. If
the evaluation of moves depends only on elements & > j, a backward version of the dynamic
programming algorithm can be applied. This version that starts with 7(n) and then generates the
sequence of A(j), j=n,n—1,...,1.

When applying the algorithm, the particularities of the moves have to be taken into ac-
count when using (1). Consider, for example, the application of dynasearch to the TSP using
2—exchange moves as the underlying simple moves. Here we assume that a tour is represented as
m = (m(1),...,m(n+1)), where we define r(n+1) = 7(1). If1 <i+1 < j <nandn(j+1) #
w(i), a 2—exchange move is obtained by removing edges (7 (i), 7(¢ + 1)) and (7 (j), 7 (j + 1))
from the current tour 7 and introducing edges (7 (i), 7(j)) and (7 (i + 1), 7(j + 1)). The move
is accepted if the new tour is shorter, i.e. if and only if

d(m (i), 7 (i + 1)) + d(x(5), 7(j + 1)) > d(w (i), 7(j)) + d(x(i + 1), 7(j + 1)),
where d(;j is the cost function defined on the set of edges.

The dynasearch 2—exchange algorithm presented by Congram [24] tries to improve a Hamil-
tonian path between two fixed end points 7r(1) and 7(n). In this case, two 2—exchange moves that
delete edges (7 (i), w(i + 1)) and (w(h),7(h + 1)), where 1 < i+ 1< h < n, w(j + 1) # 7 (i),
and (w(k),w(k+1)) and (x(l),7(I + 1)), where 1 < k+1 < < mn,w(l +1) # n(k), are inde-
pendent if we have h < k or ! < i, because in this case the segments that are rearranged by the
two moves do not have any edges in common. An example of such an independent dynasearch
move is given in Figure 2.
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Figure 2: Example of a dynasearch move that is composed of two independent 2—exchange
moves.

In this case, A(j) is the largest reduction of the length of the path between the endpoints 7 (1)
and () obtained by independent 2—exchange moves. The initialisation of the dynamic program
is A(1) = A(2) = A(3) = 0, because we need at least four nodes to apply a 2—exchange move.
The recursion formula then becomes

AG+1) = max (AG) +3(i,5 + 1)}

A(n + 1) gives the maximal improvement.

Current applications of dynasearch comprise the travelling salesman problem [24], the single
machine total weighted tardiness problem (SMTWTP) [24, 25], and the linear ordering problem
(LOP) [24]. A general observation is that dynasearch, on average, is faster than a standard best-
improvement descent algorithm and returns slightly better quality solutions. Particularly good
performance is reported, if dynasearch is used as a local search routine inside an iterated local
search [53] or guided local search algorithm [85]. Currently, iterated dynasearch is the best
performing metaheuristic for the SMTWTP and very good results were also obtained for the
TSP and the LOP [24].

2.4 PNSP Example: Hyperopt Neighbourhoods

As mentioned before, hyperopt is an example of a hybrid algorithm of the PNSP type. Here, we
present the application of hyperopt to the TSP. This application was examined by Burke et al. for
the symmetric and the asymmetric TSP [19, 20]. To keep the presentation as simple as possible,
we will only consider the application to the TSP.

The hyperopt neighbourhood is based on the notion of hyperedges. Given a tour of the TSP,
a hyperedge is defined to be a subpath of the tour; in other words, a sequence of successive
edges of the tour [19]. If 4 is the start node and 5 the end node of the hyperedge, we denote the
hyperedge by #(i, ). The length of a hyperedge is given by the number of edges in it. Let¢
be a feasible tour of the TSP and (i1, ix+1) and H(j1, jx+1) two hyperedges of length & such
that H(é1,ik+1) N H(j1,jk+1) = O with respect to the nodes contained. We assume that the
tour ¢ can be written ¢ = (41, ---,%k41,---,J1,---,Jk+1,---,%1). I iS Obvious that the tour ¢
can be described completely by four hyperedges: H(i1,%5+1), H(ik+1,51), H(j1,5k+1), and
H(jx+1,41), as shown in Figure 3(a). Burke et al. define a k-hyperopt move as a composition
of the two following steps: remove H (i1, ix+1) and H(j1, jr+1) from the tour ¢, then add edges
to H(ig+1,71) and H(jr+1,41) such that a new feasible tour is constructed (see Figure 3 for an
example). The k-hyperopt neighbourhood consists of all k-hyperopt moves.

The size of the k-hyperopt neighbourhood increases exponentially with k. Burke et al. pro-
pose an “optimal” construction of a k-hyperopt move by solving exactly a subproblem: the TSP
defined on the graph G' = (V', E'), where V' is the set of nodes included in #(i1,%x1) and
H(j1,Jr+1) and E' is the set of edges in the original TSP that have both ends in V’. However,



. [
e . ® a1 k+1

i1 Jk+1 i1
(@ (b) (©

Figure 3: (a) A feasible tour can be seen as the union of H (i1, ik+1), H(ik+1,71), H(j1, jk+1), and
H(jr+1,%1). (b) The hyperedges H(i1,%x+1) and H(j1, jx+1) are removed. (c) A new feasible tour is
constructed.

this approach is bound to be efficient only when & is relatively small. Otherwise, a large size
TSP would have to be solved as a subproblem.

Following this observation, Burke et al. consider only the cases when k = 2 and & = 3 in
the case of the TSP and do not use any algorithm to solve the subproblems [19]. They obtain
the optimal solution of the subproblems simply by enumeration. An interesting direction for
future research can be the investigation of considering larger values of k¥ combined with the use
of more sophisticated tools for obtaining the optimal solution of the subproblems generated. In
the case of the asymmetric TSP numerical results are given for £k = 3 and & = 4 [20]; a dynamic
programming algorithm was used to explore the neighbourhood, but no details of the algorithm
are given.

For a given hyperedge #(i1,ix41) the k-hyperopt move to be performed is determined
in [19, 20] by evaluating the best k-hyperopt move over the set of all possible hyperopt moves.
Therefore a sequence of subproblems is generated and solved, one subproblem for every hyper-
edge that does not intersect with # (i1, ig+1). Itis not clear how (i1, ix1) is chosen in the first
place or if that hyperedge also changes. This is clearly an expensive approach from the point of
view of the computational time. To speed up computation Burke et al. use “don’t look bits” [15]
that ban some hyperedges from being considered.

As a further extension, the use of k-hyperopt moves inside a variable neighbourhood search
procedure [39, 41] was proposed. However, the currently available results suggest that the re-
sulting hyperopt local search for the ATSP is somewhat inferior to current state-of-the-art local
search techniques [46]. In spite of this, we believe that the k-hyperopt approach is a promis-
ing research direction, which deserves to be further investigated. A clear first research direction
would be to enlarge the neighbourhood searches by increasing the value of &, while using truly
efficient algorithms to solve the resulting subproblems.

2.5 Other approaches

The two NSP techniques for exploring a neighbourhood that we described in this section have
been applied to a variety of problems; for an overview of VLSN search applications we refer
to a webpage maintained by Ahuja and Orlin [4]. Another example of such a method is the
constraint programming approach by Pesant and Gendreau [65, 66], where the exploration of
the neighbourhood is modelled as a problem that is then solved with constraint programming
techniques [57, 83]. Constraint programming is an especially promising approach, if the resulting
search problems are tightly constrained.

PNSP algorithms have been more widely applied. As mentioned before, one of the first PNSP
algorithms is the shuffle heuristic of Applegate and Cook [10], which was applied to the job-shop
scheduling problem (see Section 6.2 for a description of this problem). Briefly, their approach



consists of defining a partial solution by leaving the sequence fixed for one or a few machines.
The subproblem of completing the schedule is then solved by branch-and-bound. Another ex-
ample is the MIMAUSA algorithm, introduced by Mautor and Michelon [59, 60, 58], applied
to the quadratic assignment problem (see Section 4.2 for more information on this problem). In
MIMAUSA, at each step % variables are ”freed”. The subproblem of assigning values to the free
variables, subject to the constraint that the rest of the solution is kept fixed, is solved to optimality.
A similar approach has been applied by Biidenbender, Griinert, and Sebastian to the direct flight
network design problem [18]. PNSP methods also have been successfully applied in combination
with constraint programming techniques, with some noteworthy examples being the applications
of Caseau and Laburthe [23] for the job-shop scheduling problem or that of Shaw [77] for the
vehicle routing problem, where a Branch-and-Bound algorithm was integrated into tabu search.
For a detailed overview of combinations of local search and constraint programming we refer to
the recent overview articles by Focacci, Laburthe, and Lodi [32].

2.6 Discussion

In general, the use of exact algorithms for exploring large neighbourhoods is appealing. For some
problems the resulting neighbourhoods can be explored fully by polynomial time algorithms, the
most noteworthy example being here the dynasearch approach. If the large neighbourhoods
cannot be explored in provably polynomial time, often the resulting neighbourhood search prob-
lems, whether corresponding to full or partial neighbourhood, can be solved efficiently by exact
algorithms. This is mainly due to the exact algorithms being, in most cases, rather quick if the
problem size is not too large and to the fact that the resulting subproblems often have a special
structure that can be exploited efficiently.

Despite the usefulness of exact algorithms in these methods, it is clear that the resulting sub-
problems could also be solved by approximate algorithms. In fact, a general framework for this
idea of defining subproblems and exploring them heuristically, POPMUSIC, was defined in a
paper of Taillard and Voss [78]. Similar ideas were also put forward in variable neighbourhood
decomposition search [42]. In fact, it would be interesting to carefully examine the use of local
search algorithms or heuristics versus the use of exact algorithms for exploring the large neigh-
bourhoods; however, to the best of our knowledge, no study on this issue has been conducted so
far.

3 Exploiting the structure of good solutions

Many optimisation problems show some type of structure in the sense that high quality solutions
have a large number of solution components in common with optimal solutions. This observation
can be exploited in several ways by defining appropriate subproblems of the original problem by
using the information obtained from high quality solutions. Often the resulting subproblems are
small enough to be solved by exact algorithms.

3.1 Framework

This approach consists of two phases. In the first phase, an approximate algorithm is used repeat-
edly to collect a number of solutions of the problem under consideration. Based on the solution
components that are included in the set of solutions, a subproblem of the original problem is
defined. It is expected that the subproblem still contains all or, if not all, most of the "important”
decision variables and that the subproblem can be solved relatively easily by an exact algorithm.
The optimal solution for the subproblem is then an upper bound for the optimal solution of the
original problem.
An algorithmic outline of the type of methods falling into this framework is given next.
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Algorithm 3.1 Exploiting structure by collecting information

Step 1: Initialisation
Let Z = @, where T is the set of collected solutions.
Step 2: Approximate algorithm
while stopping criterion is not met do
Let S Balth& dol@tion returned after running an approximate algorithm
enddo
Reduce 7 according to some criteria (optional).
Step 3: Optimisation
Define a subproblem P (Z) that depends on Z.
Find opt(P(Z)), the optimal solution of P (7).
Step 4: Return opt(P(Z)).

Next we give two well known examples where this idea was successfully applied to obtain opti-
mal or close to optimal solutions for the TSP and for the p-median problem.

3.2 Example: Tour Merging

Applegate, Bixby, Chvatal, and Cook proposed the tour merging approach [9], which was subse-
quently studied in more detail by Cook and Seymour [26]. Tour merging is a two phase procedure
following the algorithm outlined above.

The first phase consists of generating a number of high quality tours for the TSP instance
that needs to be solved. In order to do that, Applegate et al [9] used the chained Lin-Kernighan
algorithm, an effective iterated local search algorithm [53] for the TSP. However, it is clear that
any other algorithm for generating high quality solutions for the TSP can be used, for example
the iterative application of Helsgaun’s effective Lin-Kernighan implementation [43]. This was
the heuristic applied in [26]. In what follows we will denote the set of tours obtained during the
first stage by 7.

The second phase consists of solving the TSP on the graph induced by the set of tours Z
on the original graph. In other words, a TSP is solved on a restricted graph that has the same
set of nodes as the original graph, but its set of edges consists of the edges that appear at least
once in any of the tours in Z. Formally, if the original graph is G = (V, A), where V' is the
set of nodes and A the set of arcs, the reduced graph can be described as G' = (V, A"), where
Al={aeA:FteT,act}

Several possibilities of solving the TSP on the reduced graph G’ can be considered. In [9], a
general purpose exact algorithm for the TSP was used: the Concorde code available online [8].
When Concorde was applied to medium sized instances with up to 5000 cities, the tour merging
method could identify optimal solutions for all instances at least twice out of ten independent
trials. However, on some few instances the computation time was large, with most of it being
taken by the optimisation code applied in the second stage. Additional experiments investigated
how the quality and the number of tours in Z affected the solution quality and the computation
time required in the second stage. Another possibility of solving the TSP in G’ is to use special
purpose algorithms that exploit the structure of the graph G'. In particular, G’ is a very sparse
graph and it is likely to have a low branch-width [70]. In [26], a dynamic programming algorithm
that exploits this property is presented and computational results on a wide range of large TSP
instances (2,000 up to about 20,000 cities) show excellent performance, resulting in computation
times for the second stage that are much shorter than times required by a general purpose TSP
solver. In fact, the tour merging approach, especially in the way it is applied by Cook and
Seymour [26], is currently one of the best performing approximate algorithms for medium size
to large TSP instances.
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3.3 Example Heuristic Concentration

A similar idea is used by Rosing and ReVelle for the solution of the p-median problem [72].
Givenagraph G = (V, A), where V = {1, ...,n}, each node having an associated weight, each
arc having an associated distance, and given a positive integer p, the p-median problem consists
of finding p nodes in the graph, called facilities, such that the sum of the weighted distances
between every node and its closest facility is minimised. The nodes that are not facilities are
called demand nodes. This problem can be modelled as a binary integer problem (BIP) [69] as
follows:

n n
min E E w,-dij:c,-j

i=1 j=1

st wy =1,V 2)
j=1
zj; — iy 2 0,V4,j,i # j (3)
D wji=p 4)
j=1
z € {0,1}", ®)

where w; is the weight associated with demand node 4, d;; the distance from node ¢ to node j, 1
the index of demand nodes, and j the index of facility sites. The decision variables are z;; = 1,
if demand node s is associated to facility j, and z;; = 0 otherwise. An important characteristic
of this model is that in most cases (over 95%) the optimal solution of its linear programming
relaxation is integer [61]. When the optimal solution is fractional, an integer solution can be
found quickly using branch-and-bound [74]. However, since the difficulty of any LP approach
increases with the size of the problem, other solution methods are needed for large values of n.

The technique developed by Rosing and ReVelle is called heuristic concentration. In the first
phase, a local search procedure, in this case the Teitz and Bart heuristic [79], is run repeatedly
with different random starts. Every solution obtained in this process is recorded in a set Z. The
number of times the heuristic is run is determined after conducting numerical experiments.

The second phase starts with the selection of a subset Z' of the solutions in Z, thatis 7' C Z.
7' contains only the best solutions of Z with respect to the objective function; the number of
solutions in Z' is again determined by numerical experiments. The facility locations used in
these “best” solutions form a subset of the set of all nodes and they will be collected in what the
authors call the concentration set (C'S). Finally, a restricted p-median problem, with the facility
locations restricted to those contained in the concentration set, is solved. The integer model of
the restricted problem is similar to the original model; the only difference is that 7 can only take
values from C'S, i.e. i € CS.

Clearly, this method is built on the assumption that a near-optimal or optimal solution must
have the facilities located at sites from CS. However, this is only an assumption based on exper-
imental results. An even stronger assumption is made by the authors in order to further reduce
the dimension of the subproblem being solved. This is the claim that the nodes that are facilities
in all solutions considered must be facilities. The rest of the CS contains possible locations.
Therefore, they split CS into two subsets: one contains the locations where there are facilities in
all solutions, called CS open (C'Sp), and the other one contains the nodes where there is a facility
in at least one but not all solutions. The latter subset of CS is called CS free (C'S). The authors
also exploit the fact that each demand node not in C'S must be assigned to the closest facility; for
every node, variables are needed only for that node in C'Sy that is closest to the demand node,
and only for those nodes in C'S that are even closer than that member of the C'Sy. The binary
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integer model of this restricted p-median problem can be written as follows:

n
min E E widijmij

i=1 jER;
s.t. Z Tij = ].,Vi ¢ CSo (6)
JER;
zj; =1,Vj € CSo U]
Tjj — Tij > O,Vi,Vj € R;,1 75.7 (8)
Z Zj; =P (9)
jecs
Tj; € {0, 1},Vj S CSf, (10)

where forall i ¢ C'Sy we define M; = {j : d;; = kren(l’% dig}and R; = M;U{j : dij < dix,J €
250

CSy,k € M;}.

Itis clear that when C'S can be split, the size of the second subproblem is smaller than the size
of the first one. However, there is no guarantee that such a partition of C'S exists. When C'Sy = 0,
the only possibility is to use the first subproblem. Since in most cases the solution of the LP
relaxation of the binary integer model of a p-median problem is integer, Rosing and ReVelle
solve the LP relaxation of the restricted problem using an LP solver (in this case CPLEX). Even
when the solution is fractional, an integer solution is found very easily. Numerical results are
provided in both [72] and subsequent papers [71, 73]. They prove that the heuristic concentration
is a viable technique that obtains very good results in practice.

3.4 Discussion

The two examples we presented in this section show that approaches based on collected infor-
mation can result in highly efficient hybrid algorithms in practice. Intuitively, it is clear that this
approach strongly relies on some characteristics of the high quality solutions returned by the
approximate algorithms. Firstly, it is important that these solutions have many components in
common so that the resulting subproblem is of reasonably small size in order to be amenable to
solving with exact algorithms. In fact, for the TSP it is a well known property that local minima
cluster in a small region of the search space and that the better their quality, the more edges they
have in common with an optimal solution [16, 47]; some evidence exists that similar conclusions
hold for the p-median problem [40]. Secondly, the resulting subproblem is required to contain
(all) the important decision variable to ensure that the solution found in the second stage solved
by an exact algorithm can return a very high quality solution.

A similar approach is followed by Finger, Stiitzle, and Lourenco for the set covering problem
(SCP) [31]. Finger et al. start by making a fitness distance correlation analysis of the SCP search
space. Based on the result that for some classes of SCP instances the characteristics mentioned
above were satisfied, a subproblem is defined by the solutions returned by several local searches
and then solved using a simulated annealing approach for the SCP [17]. The reason why a
local search (and not an exact) algorithm is used in the second stage is that for the largest SCP
instances tackled some of the resulting subproblems are still quite large and require considerable
computation time.

Finally, we mention that the collected information approach may run into problems if the
approximate algorithms have difficulties in finding feasible solutions or when the problem is
essentially a feasibility problem. In this case, it is an open issue how the information based on
running approximate algorithms can be used. However, several approaches that try to identify
infeasible subproblems that induce the infeasibility of the original problem were proposed. An
example is the algorithm by Eisenberg and Faltings, where information obtained from running
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a local search algorithm is used to derive variable ordering strategies for quickly identifying
infeasible subproblems by a backtracking type algorithm as quickly as possible. Initial results
obtained by Eisenberg and Faltings on graph colouring problems appear to be promising [30].

4 Using bounds in construction heuristics

We first mention that throughout this section, we assume that we need to solve minimisation
problems. For maximisation problems the notation and nomenclature has to be adapted in the
standard way. The use of lower bounds is essential in exact algorithms, but lower bound related
information is typically not exploited in approximate algorithms that are applied iteratively. Here,
we present a recent proposal, where approximate algorithms make use of lower bounds.

4.1 Framework

Construction heuristics build solutions by starting from an empty partial solution and iteratively
adding solution components until a complete solution is obtained. Construction heuristics typ-
ically rate the desirability of adding a solution component based on a heuristic measure of its
objective function contribution. Then, they either add a solution component greedily, that is by
choosing the best rated component, or probabilistically, biased by the heuristic information.

Instead of using the direct contribution of solution components to the objective function
value, a different approach is to use lower bound computations to direct the solution construction,
as it is described in the following algorithmic outline.

Algorithm 4.1 Solving subproblems in order to obtain lower bounds

Step 1: Initialisation
Let S, be an empty partial solution.
Step 2: Construction phase
while S, is not a complete solution do
for all solution components s. do
Compute a lower bound for S, U {s.}.
endfor
Choose the solution components s.. to be added either greedily or probabilistically
biased by the lower bound information.
Update S,.
enddo
Step 3: Return completed solution.

If lower bounds are used to direct the construction of the solution, the desirability of ex-
tending a solution in a specific direction is stronger, when the lower bounds are smaller. Lower
bounds in construction heuristics are especially useful if a large number of solutions is con-
structed, as it is the case in the following example.

4.2 Examples ANTS

Ant Colony Optimisation (ACO) [27, 28] is a recent metaheuristic approach for solving hard
COPs. In ACO, (artificial) ants are stochastic solution construction procedures that probabilisti-
cally build a solution by iteratively adding solution components to partial solutions while taking
into account (i) heuristic information on the problem instance being solved, if available, and (ii)
(artificial) pheromone trails. Pheromone trails in ACO serve as distributed, numerical informa-
tion which is adapted during the execution of the algorithm to reflect the search experience. Of
all the available ACO algorithms (see [28] for an overview), the Approximate Nondeterministic
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Tree Search (ANTS) algorithm [54] follows closely the idea outlined above, since it uses infor-
mation obtained from lower bound computations as heuristic information for guiding the solution
construction of the ants. According to [54] the term ANTS derives from the fact that the algo-
rithm can be interpreted as an Approximate Nondeterministic Tree Search since it shares several
elements with an approximated Branch-and-Bound procedure. In fact, in [54] the ANTS algo-
rithm is extended to an exact algorithm; we refer the interested reader to the original reference
for details; here we only present the heuristic algorithm.

ANTS was first applied to the quadratic assignment problem (QAP). In the QAP, a set of
objects has to be assigned to a set of locations with given distances between the locations and
given flows between the objects; the goal in the QAP is to place the objects on locations in such
a way that the sum of the product between flows and distances is minimal. More formally, in
the QAP one is given n objects and n locations, values a;; representing the distance between
locations ¢ and j and b,, representing the flow between objects » and s. Let 2;; be a binary
variable which takes value 1 if object ¢ is assigned to location j and 0 otherwise. The problem
can be formulated as follows:

min Z z Z Z a3 brp ik i (1)

subject to the constraints

n
Y ay=1 j=1,...,n (12)
i=1
dap=1 i=1,...,n (13)
j=1
ZU,'jE{O,l} ,7=1,...,n (14)

In ANTS, each ant constructs a solution by iteratively assigning objects to a free location.
Hence, the solution components to be considered are the couplings between objects and locations
(there are n? such solution components). Given a location j, an ant decides to assign object i to
this location with the following probability:

& _ Oé'Tij(t)-i-(l—a)‘nij I ;
PO S e @ a-a)my N =
Here, 7;;(t) is the pheromone trail associated to the assignment of object i to a location j, which
gives the “learned” desirability of choosing this assignment (pheromones vary at run-time), n;;
is the heuristic desirability of this assignment, « is a weighting factor between pheromone and
heuristic, and V; is the feasible neighbourhood, that is, the set of objects that are not yet assigned
to a location.

Lower bound computations are exploited at various places in ANTS. Before starting the
solution process, ANTS first computes the Gilmore-Lawler lower bound (GLB) [34, 48]. The
GLB is defined to be the solution to the assignment problem

n
min E E CijTij

i=1 j=1

subject to constraints (12) to (14), where the coefficients c;; are defined as a function of distances
and flows and the variables z;; are binary. It is known that the assignment problem has the
integrality property and therefore a solution of it can be obtained by simply solving its linear
programming relaxation. Along with the lower bound computation one gets the values of the dual
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variables u; and v;, i = 1,...,n, corresponding to the constraints (12) and (13), respectively.
The dual variables v; are used to define a pre-ordering on the locations: the higher the value
of the dual variable associated to a location, the higher the impact of the location on the QAP
solution cost is assumed to be. Hence, the assignment of an object to that locationis tried earlier.

The essential idea of ANTS is to use computations on the lower bounds on the completion
cost of a partial solution in order to define the heuristic information about the attractiveness
of adding a specific solution component (7, j) in (15). This is achieved by tentatively adding
the solution component to the current partial solution and by estimating the cost of a complete
solution, (containing that solution component), by means of a lower bound. This estimate is then
used to influence the probabilistic decisions taken by the ant during the solution construction:
the lower the estimate, the more attractive the addition of a specific pair.

A disadvantage of the GLB, which is computed in an initialisation phase of the algorithm,
is that its computation is O(n?). This is clearly expensive, since a lower bound has to be com-
puted at each step during a solution construction of an ant. Therefore, Maniezzo proposes a
lower bound weaker than GLB, the so-called LBD bound, which exploits the values of the dual
variables to estimate the completion cost of a partial solution. Although LBD can be shown to
be weaker than GLB, the main advantage of using LBD is its low computational complexity,
which is O(n). For details on the lower bound computation we refer to [54]. Experimental
results have shown that ANTS is currently one of the best available algorithms for the QAP.
The good performance of the ANTS algorithm has also been confirmed in a variety of further
applications [55, 56].

4.3 Discussion

In general, the use of lower bounds in a construction algorithm has several advantages. Firstly, a
substantial amount of research effort in the area of exact algorithms has been spent on obtaining
and improving lower bounds and for many problems good lower bounds are available. Secondly,
lower bounds can give a good indication of the desirability of specific ways of extending solu-
tions. Thirdly, if the solution construction is repeated often, several solution components may
be eliminated from consideration (if they lead to solutions that are worse than the best solution
identified so far). So far however, lower bounds have not been used much in constructive heuris-
tics. One exception is the Beam-search heuristic, which is a tree search algorithm that keeps
at each iteration a set of nodes of a search tree and expands them in several directions accord-
ing to a selection based on lower bounds [64]. In fact, beam search is derived from ideas from
Branch-and-Bound algorithms. In the future we expect more approaches that are based on these
ideas, possibly combined with other ways of exploring or defining search trees such as in iterated
greedy algorithms [68]. However, since lower bounds are used at each construction step, efficient
computation of them will be essential for the success of such approaches.

Information based on lower bound computations through Lagrangean relaxation have been
exploited in several algorithms, for example, for the set covering problem. The central idea in
these approaches is to use Lagrangean multipliers and costs to guide construction heuristics.
Among the first approaches that use Lagrangean relaxation is the heuristic by Beasley [14].
Currently, several of the state-of-the-art algorithms for the set covering problem are, at least in
part, based on essentially the same ideas [21].

5 Defining the search space areas to explore

The class of methods that we introduce in this section the areas of the search space to be explored
by a local search procedure, by solving one or more relaxations of the initial problem.

16



5.1 Framework

Another method that we discuss in this paper combines a local search approach with an exact
algorithm that solves some linear programming subproblems, which are created in order to re-
duce the search space and to define areas of the search space for the local search algorithm.
The subproblems are relaxations of an integer programming model of the initial problem, which
are (optionally) strengthened by the addition of some extra constraints. The optimal solutions
of these subproblems are then used to define the search space for the local search algorithm.
Formally, the general procedure can be described as follows:

Algorithm 5.1 Solving subproblems in order to define the search space areas

Step 1:Relaxation
Define a relaxation of the original problem.
Step 2: Generate and solve subproblems
(i) Using the relaxation from Step 1, define some subproblems to solve.
(if) Eliminate the subproblems that cannot provide useful information.
(iii) Solve the remaining problems by an exact algorithm.
Step 3: Local search
(i) Define the search space using the optimal solutions obtained at Step 2 (iii).
(ii) Apply local search.

An example of such a method is given by Vasquez and Hao for the 0-1 multidimensional
knapsack problem [84]. They combine tabu search with an exact method, in this case a simplex
algorithm that solves some linear programming subproblems.

5.2 Example: Simplex and Tabu Search hybrid

Given m resources, each having a corresponding resource limit, n objects, each with an associ-
ated profit and an associated vector of resource consumption, the 0-1 multidimensional knapsack
problem seeks to maximise the total profit made by using the objects such that the amount of
resources consumed in within the resource limits. In what follows we will denote the profit as-
sociated with object ¢ by p;, the amount of resource j consumed by selecting object 4 by r;;,
and the limit of resource j by R;. The standard integer programming formulation of the 0-1
multidimensional knapsack problem can be written as follows:

n
maXx E DiZ;
=1

s.t. ZT]'Z'Z',' < Rj, VJ = ]., P (1) (16)
i=1
ze{0,1},  Vi=1,...,n, 17)

where z; = 1 if object 7 is used and x; = 0 otherwise. We will refer to this formulation as (MK).

The method we discuss here starts by relaxing the integrality constraint. Since the solution of
the LP relaxation of an integer programming problem can be far away from the integer optimal
solution, the LP relaxation is then “strenghtened” by the addition of an extra constraint. It is
clear that the integer optimal solution of the 0-1 multidimensional knapsack problem can have
only a certain number of components that are not zero. Based on this observation, the constraint
added to the LP relaxation enforces the number of non-zero components to be equal to &, where
0 < k < n (see constraint (18) below). Therefore n + 1 linear programming problems are
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obtained (one for each value of k):

n
max E PiZ;
i=1

n
s.t. ZTJ'Z'.’L',' < Rj, VJ = 1,...,m

i=1
dwi=k (18)
i=1
z; €[0,1], Vi=1,...,n (19)

We denote such a subproblem by P (k). Clearly, the solutions of these problems can be fractional,
however it is hoped that the optimal solution of the original problem is close to one of the optimal
solutions obtained after solving the relaxed problems.

Vasquez and Hao propose a reduction of the number of the subproblems that need to be
solved by calculating bounds on &. This is done by rounding up or down the optimal solutions of
two new LP problems. Let z is a feasible solution of the LP relaxation of (MK) and LB a lower
bound on the optimal solution of the original problem. The two LP problems seek to minimise,

respectively maximise 7, x;, such that Z pix; > LB + 1. The integer values obtained after

rounding up, respectively down, the optimél slolutions of the problems described above provide a
lower, respectively upper bound on k. We note that while Vasquez and Hao mention that a lower
bound LB can be found heuristically, they do not provide any details about how they obtained
such a bound.

After the reduction, the LP subproblems that need to be considered are solved by the simplex
algorithm. The solutions returned are then used to generate starting solutions to a following tabu
search phase. More precisely, an initial solution is obtained from a possibly fractional solution
x!¥] to P (k) by fixing its greatest & elements to one and the rest to zero. The solution z[*! of P (k)
has the additional use to restrict the search space explored by a tabu search procedure. In fact, the
subsequently run tabu search algorithm, which is based on the reverse elimination method [35],
is restricted to explore only solutions z for which it holds that "7 , |z; — xg’“]| < 6max, that
is, the solutions explored by the tabu search are limited to a ball of radius dmax around z!*.
The radius dmax is computed heuristically as follows. Let no_int denote the number of integer
components of z!¥ and no_frac the number of fractional components; then, the radius is set to
a value of dmax = 2 x (no_int+no_frac— k). Note that dmax = 0 corresponds to the case when
an integer solution is returned by the simplex. The search space is further reduced by limiting
the number of objects taken into configurations; for each &, the number of non-zero components
of a candidate solution is considered to be exactly k& and only the integer candidate solutions are
considered. The neighbourhoods are defined as add/drop neighbourhoods; the neighbourhood
of a given configuration is the set of configurations that differ by exactly two elements from the
initial configuration, while keeping the number of non-zero elements constant.

An extensive computational study of the final algorithm is provided. The authors report many
improved results compared to the best known results at the time of publication; however they
acknowledge large computational time of about three days on a set of computers with Pentium
300MHz or 500 MHz computers for very large instances with as many as 2,500 items and 100
constraints.

5.3 Discussion

The paper of Hao and Vasquez is an example of how information of solutions of relaxations of IP
formulations can be used to restrict the area of the search space examined by local search algo-
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rithms and to provide good initial solutions for the local search. Here, the underlying conjecture
is that the information obtained from the relaxation helps to restrict the search space to areas
where good (or ideally optimal) solutions are located. Certainly, the crucial part of the algorithm
of Hao and Vazques is the extent to which this hypothesis holds; in fact, the very high qual-
ity solution reached by the method of Hao and Vasquez suggests that for the multi-dimensional
knapsack problem this hypothesis is met. However, an additional (search space) analysis would
be welcome to understand why it is successful in this case.

6 Enhancing metaheuristics

Occasionally, exact methods are employed when metaheuristics try to add specific features of
diversification or intensification of the search that are beyond the use of exploring neighbour-
hoods in iterative improvement algorithms. In this section we discuss one explicit example in the
context of Iterated Local Search.

6.1 Framework, Iterated Local Search

An approach to solving difficult COPs that has been very successful is the Iterated Local Search
(ILS) [53]. ILS consists of running a local search procedure starting from solutions obtained by
perturbing previously found local optima. A simple form of an ILS is given in Algorithm 6.1.

Algorithm 6.1 Iterated Local Search

Step 1: Let S be an initial solution.
Step 2: while stopping_criterion is not met do

Q) Let S’ be the solution obtained from S after a perturbation.

(i) Call local_search(S’) to produce the solution S"'.

(iii) if S” is accepted as the new incumbent solution then S = S"'.
enddo

Step 3: Return S.

There are many implementation choices for ILS. These mainly concern the way the pertur-
bation in Step 2(i) is performed, the choice of the local search algorithm in Step 2(ii), and the
particular acceptance criterion that is used in Step 2(iii).

In what follows we focus on the choice of the perturbation. The main role of the perturba-
tion in ILS is to introduce significant changes in the current solution in order to allow the local
search to explore different local optima, while still conserving good characteristics of a current
solution. Simple ways of introducing such perturbations, like applying a random move in a large
neighbourhood, are usually enough to obtain good performance. However, state-of-the-art per-
formance is often reached by more problem specific perturbations and when the perturbations
introduce some structural changes that cannot be reversed easily by a local search [53].

One central possibility of combining exact algorithms with ILS is to let an exact algorithm
determine the perturbation. This is done by first fixing some part of the solution and leaving the
rest free. Next, the free part is optimised, conditioned to the fixed part and the solution to the
free part is reinserted into the fixed part, possibly after restoring feasibility, in case this should
be necessary. In other words, at Step 2(i) of Algorithm 6.1 a subproblem is solved to optimality.
Formally, Step 2(i) is replaced by:

Procedure 6.1 Solving a subproblem to determine the perturbation (new Step 2(i) of ILS)
begin

LetS” =S\ R,where R C S.
Define P(R), a subproblem that depends on R.
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Let opt(P(R)) be the optimal solution of P(R).

Let S' = S" Uopt(P(R)).

Modify S’ such that feasibility is restored.

Return S’, be the modified feasible solution.
end

The use of an exact algorithm is likely to introduce larger structural changes, which cannot be
easily undone by the local search.

6.2 Example: Perturbationin ILSfor job-shop scheduling

An example of how to determine a perturbation by using exact algorithms to solve a subproblem
is given by Lourengo [52]. In her paper, Lourengo conducts an extensive computational study
of ILS methods applied to the job-shop scheduling problem (JSP). The JSP is defined for m
machines and n jobs. We denote the jobs by Ji,...,J,. Each job consists of a sequence of
operations that have to be performed in a given order. Each operation has to be executed for
a specified, uninterrupted time (i.e., preemption is not allowed). We describe a job .J;, as the
sequence of operations of, . . ., o{fk , Where ry, is the number of operations of J;. The total number
of operations isr = ry + --- + r,,. In the JSP, precedence constraints induce a total order on
the operations of each job. Additional constraints require that each machine handles at most one
job at a time. A feasible schedule is a schedule that satisfies all the precedence and capacity
constraints. Then, the JSP consists in finding a feasible schedule that minimises the overall job
completion time.

The job-shop scheduling can be modelled using the disjunctive graph G = (V, A, E) rep-
resentation, where V' is the vertex set corresponding to the operations, A is the arc set corre-
sponding to the job precedence constraints, and E is the edge set corresponding to the machine
capacity constraints [75].

In order to formally define the components of the graph we use the following notation. We
write ¢ < j if operation ¢ precedes operation j, and O is the set of operations, where |O| = r.
We use U to denote set of operations that start the n jobs, i.e. i = {o},...,07}. Similarly, let T
be the set of operations that end the jobs, i.e 7 = {0} ,...,0" }. Finally, we use (i, j) to denote
an arc between nodes ¢ and j and [, j] for an edge (un-oriented arc) between 4 and j.

We can now give a formal description of G. The set of nodesis V' = {1,...,7} U {s,t},
where node ¢ € {1,...,r} corresponds to the ith operation from O, and s and ¢ are two nodes
called start and end node, respectively. The set of arcs can be described by: A = {(s,%) :
i corresponds to a job in U} U {(i,t) : ¢ corresponds to a job in T} U {(4,5) : ¢ < j,i =
1,...,r}. Finally, E = {[i,j] : ,j are executed on the same machine}. If no extra con-
straints are given, each node corresponding to an operation has an associated weight, which is
equal to the processing time of that operation, while the start and end nodes have weights zero.

In this graph, the scheduling decision corresponds to orienting each edge in E. A feasible
schedule is obtained when all edges are oriented and the resulting graph is acyclic. The overall
completion time is given by the total weight of the critical path from s to ¢, where the total weight
of a path is defined to be the sum of the weight associated with all nodes visited by that path.

Lourenco experimentally tested several variants of ILS, including several variants of the per-
turbation. The first perturbation procedure proposed by Lourencgo is making use of Carlier’s
algorithm [22], which is a branch-and-bound method applied to the one-machine scheduling
problem. This problem can be seen as a very simple version of the job-shop scheduling problem:
a number of operations need to be scheduled on one machine in the presence of temporal con-
straints. Lourengo’s idea is to modify the directed graph corresponding to the current solution
of the job-shop scheduling problem by removing all the directions given to the edges associated
with two random machines. Then Carlier’s algorithm is applied to one of the machines; the prob-
lem to solve is therefore a one-machine scheduling problem. Next, the edges corresponding to
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that machine are oriented according to the optimal solution obtained. Finally, the same treatment
is applied to the second machine. Lourenco mentions that this perturbation idea can create cy-
cles in the graph and suggests a way of obtaining a feasible schedule from the graph with cycles
(see [52] for details). In conclusion, at each iteration of the ILS, two subproblems are solved in
order to construct a new initial solution for the local search procedure. The subproblems are of
a different type than the original problem and of reduced size. However they belong to the same
class of job scheduling problems.

A similar perturbation proposed by Lourenco is making use of the early-late algorithm [51]
as an exact method. In order to do that preemption is allowed and two one-machine problems
with lags on a chain are solved. Lourenco also gives a simple technique for eliminating cycles.
We note that in this case the subproblems solved are of a different type compared to the original
problem.

Finally, it should be said that the computational results of Lourenco cannot be considered
state-of-the-art performance; the main reason for this is that she used a rather weak local search
algorithm when compared to the effective tabu search algorithms proposed by Nowicki and Smut-
nicki [63] or the local search procedure of Balas and Vazacopoulos [13]. However, it would be
interesting to see how the performance of these two algorithms would be affected by the addition
of the perturbation steps proposed by Lourenco.

6.3 Other approaches

Exact algorithms can be used within particular metaheuristics for specific operations that are
to be done while searching for solutions. Apart from the perturbations in ILS, other examples
can be found in applications of genetic algorithms; here, exact algorithms are typically used
in the recombination operation, in which two solutions S and S’ are combined to form one or
several new solutions. The central idea is to define a subproblem Recomnbi nat i on(S, S") that
comprises all the solutions that can result following a particular way of combining S and S’
and then to search for the best solution of the resulting subproblem. The subproblem can be
obtained by keeping common solution features of the two “parent” solutions fixed and try to
find the best solution for the free parts (similar to the tour merging or the heuristic concentration
approach, which was presented in Section 3) or to define a subproblem consisting of the union
of the solution components contained in the two parent solutions S and S’. An example for
the first approach is presented by Yagiura and Ibaraki [86]. They apply this idea to permutation
problems using a dynamic programming algorithm for finding an optimal permutation subject
to the constraint that a partial order common to the two parent solutions S and S’ is maintained
by the new solution. Examples of the second idea are presented in the paper by Balas and
Niehaus [12] on the maximum clique problem (MCP) and the paper by Aggarwal, Orlin, and Tai
for the closely related maximum independent set problem (MISP) [2]. The MCP and MISP are
subset problems in graphs, where a subset of the vertices needs to be chosen. Hence, in both
cases, a solution corresponds to a subset of the vertices of the original graph G = (V, A), that
is, we have S, S’ C V. Then, in both cases, the subproblem consists in a subgraph comprising
all the vertices in S U S” and all edges that connect them. It can be shown that the resulting
subproblem is a matching problem in a bipartite graph and, hence, it can be solved in polynomial
time [2, 11].

6.4 Discussion

Clearly, the techniques discussed here are specific to particular metaheuristics. However, these
examples indicate possible areas of interest, where such combinations can be useful. In gen-
eral, mainly hybrid metaheuristics will be candidates for possible combinations; we call hybrid
metaheuristics those metaheuristics that consist of the combination of several clearly distinct
procedures like perturbation and local search in the ILS case or recombination, mutation, and
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(possibly) local search in the genetic algorithm case. In fact, the two examples illustrate well
the potential of such combinations. Other metaheuristics that could profit from such combina-
tions are ant colony optimisation [28], for example by optimising partial solutions, or scatter
search [38], in a way analogous to what is described for the genetic algorithms.

7 Conclusions

In this paper we reviewed existing approaches that combine combine local search and exact
algorithms derived from IP methods for the solution of AP-hard combinatorial optimisation
problems. We focused on techniques where the “master” routine is based on local search and
strengthened by the use of exact algorithms. In these approaches exact algorithms are used to
solve subproblems that arise during the search process. In addition, we restricted our survey to
methods where at least one of the local search or exact algorithms is used more than once.

We classified the combination algorithms in five different groups. The probably most im-
portant one consists of methods in which exact algorithms are used to explore large (typically
exponential size) neighbourhoods in local search algorithms. Here, two fundamentally different
ways of combining local search and exact algorithms were identified, namely those where exact
algorithms scan the full neighbourhood and the solution found by the exact algorithm induces the
next step of the local search to be executed (as examples we presented VLSN and Dynasearch)
and those where exact algorithms explore parts of the full neighbourhood (like in the hyperopt
approach). This first goup is also the one on which a significant amount of research has been
done. A number of methods that use constraint programming on subproblems instead of an exact
algorithm could also be classified as being strongly related to this group.

The second group of methods uses several runs of local search algorithms to collect infor-
mation about solution components that are likely to be contained in very high quality solutions
and defines reduced problems that can be succesfully tackled by exact algorithms. So far, few
applications of this type of approaches exist, but at least for the TSP the resulting algorithms are
currently among the best performing approximate algorithms.

A third group comprises methods that exploit lower bound computations (in the case of min-
imisation problems) to guide construction heuristics. These ideas have been exploited in a variety
of state-of-the-art algorithms (like the ANTS algorithm).

The final two groups consist of algorithms that are more tailored to the particular application
problem or the particular local search techniques used. In the first of these two group, the optimal
solutions of subproblems are used to reduce the search space for the local search. Here, the only
example we are aware of is the simplex—tabu search hybrid by Hao and Vazques. The second
of these two groups contains methods that run exact algorithms to solve some subproblems that
arise when specific metaheuristics are used. Examples are the implementation of a solution
perturbation in iterated local search or the determination of an offspring through recombination
in genetic algorithms.

Clearly, a different way of combining local search and exact algorithms is to run an exact
algorithm as the master routine and the local search as a subroutine. However, this is a different
issue and will possibly be treated in a separate future paper.

The main conclusion of our paper is that there are many research opportunities to develop
algorithms that integrate local search and exact techniques. Despite the fact that local search
and exact algorithms have somewhat complementary advantages and disadvantages, surprisingly
few algorithms exists that try to combine the two areas. One reason for this may be that such
combined methods are often rather complex and hence they involve long development times.
A possibly more important obstacle is that they require strong knowledge about the techniques
available in two widely different techniques that, even worse, are often treated in different re-
search streams in combinatorial optimisation. Therefore, another conclusion of this paper is
that a closer integration of these different research streams is highly desirable. In general, we
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strongly believe that combinations of exact methods, which need not necessarily be restricted to
IP and local search methods are a very promising direction for future research in combinatorial
optimisation.
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