
A Two-Phase Local Search for
the Biobjective Traveling Salesman Problem

Luis Paquete and Thomas Stützle

Darmstadt University of Technology, Computer Science Department,
Intellectics Group, Alexanderstr. 10, D-64283 Darmstadt, Germany�

lpaquete,tom � @intellektik.informatik.tu-darmstadt.de

Abstract. This article proposes the Two-Phase Local Search for finding a good
approximate set of non-dominated solutions. The two phases of this procedure
are to (i) generate an initial solution by optimizing only one single objective, and
then (ii) to start from this solution a search for non-dominated solutions exploit-
ing a sequence of different formulations of the problem based on aggregations
of the objectives. This second phase is a single chain, using the local optimum
obtained in the previous formulation as a starting solution to solve the next for-
mulation. Based on this basic idea, we propose some further improvements and
report computational results on several instances of the biobjective TSP that show
competitive results with state-of-the-art algorithms for this problem.

1 Introduction

Most successful, stochastic approaches to multiobjective combinatorial optimization
problems apply a local search procedure embedded in some higher level search strat-
egy to derive a good approximate set of efficient solutions. In order to guarantee that a
dispersed set of efficient solutions is obtained, several techniques have been proposed;
these can be classified into one of two main groups: Methods that aggregate the objec-
tive functions and dynamically modify the search direction during the search process
or within several runs [3, 6, 7, 9, 10, 19, 23], and methods that are based on a Pareto-
like dominance relation as an acceptance criterion in the search to distinguish between
candidate solutions [24, 13]; this second type of methods avoid the aggregation of ob-
jectives. Recently, empirical evidence was gathered suggesting that methods belonging
to the first group perform particularly well [10], the main reason being that local search
algorithms can deal more easily with aggregated objective functions. However, most of
the successful algorithms are rather complex search strategies.

In this article, the Two-Phase Local Search procedure (TPLS) is proposed to tackle
biobjective combinatorial optimization problems. The first phase consists of finding a
good solution to one single objective, using an effective single objective algorithm. This
phase provides the starting solution for the second phase, in which a local search algo-
rithm is applied to a sequence of different aggregations of the objectives, where each
aggregation converts the biobjective problem into a single objective one. Important for
the second phase is that successive aggregations and local searches are treated as a
chain: an aggregation ������� modifies slightly the emphasis given to the different objec-
tives when compared to aggregation �	� ; the local search for aggregation �	�
��� is started

Algorithm 1 Two-Phase Local Search
Require: � : vector objective function�

: aggregations of �
/*- - - - - - - - - - - - - phase one - - - - - - - - - - - - - - - - - - */������ GenerateInitialSolution�
	� � UpdateArchive � � 	
/*- - - - - - - - - - - - - phase two - - - - - - - - - - - - - - - - - - */
for � ��
 to � � � do��� � ModifyObjFunc � � ��� � � history 	� �� � LocalSearch � � ������ ����� 	� � UpdateArchive � � �� 	
end for� � � FilterArchive � � 	

from the local optimum solution ���� that was returned for aggregation � � . The main mo-
tivation for such an approach is to exploit the effectiveness of local search algorithms
for single objective problems.

To gain insight into the behaviour and performance of TPLS, we applied it to the
biobjective Traveling Salesman Problem (TSP). The experimental with a very basic
version of TPLS show a very promising performance and with a rather straightforward
improvement it was even able to achieve state-of-the-art performance for the biobjective
TSP. This is a very promising result, because the procedure is rather simple and appears
to be quite robust.

The article is organized as follows. Section 2 introduces the TPLS procedure. Sec-
tion 3 describes the multiobjective TSP and in Section 4 we present how we adapted
TPLS to the biobjective TSP. Section 5 introduces some further improvements over the
basic TPLS procedure and analyses their performance. Additional analyses on this pro-
cedure are described in Section 6. We conclude and indicate directions for future work
in Section 7.

2 The Two-Phase Local Search Procedure

The underlying ideas of the TPLS procedure are (i) to exploit the very good perfor-
mance of local search algorithms for single-objective problems, (ii) to solve a biobjec-
tive problem by chains of related aggregations into single-objective ones and chains of
good solutions for aggregations which provide starting solutions for a search regarding
a next aggregation and (iii) to have an easily understandable but at the same time robust,
flexible, and efficient procedure.

Aggregating multiple objective functions into several single-objective problems by
utility functions has shown to be an effective approach for multiobjective combinatorial
optimization problems as reported in [6, 10, 23]. Several such aggregations were pro-
posed including weighted Tchebycheff utility functions as well as weighted linear util-
ity functions. For the following, we assume that the aggregation is based on a weighted
linear utility function with normalized weight vectors. In this case we have that the
utility of a solution is rated by

��� �����
��
	�
 �
�

	 � 	 � ��� (1)

where � is the number of objectives,
�
	 is the weight assigned to the � -th objective,

and � is a feasible solution. Additionally, we have �
�	�
 � �

	 ��� due to the normaliza-
tion.

From a high level perspective, the TPLS procedure can be described as follows (see
Algorithm 1):

First phase: Generate an initial solution � considering only one of the objectives (pro-
cedure GenerateInitialSolution);

Second phase: Apply a local search algorithm (LocalSearch), using an aggregation of
the objective functions (the aggregated objective function is represented as

� �) gen-
erated by ModifyObjFunc, until a solution � �� is found, which is added to the archive.
The argument � ���� � of LocalSearch indicates that ������ � , the local optimum found in
iteration ����� is used as a starting solution for the local search in iteration � . The
process is repeated until all aggregations of the objective functions are explored.

The GenerateInitialSolution plays an important role in the procedure, since it gen-
erates a first approximation to the Pareto global optima set, and it is the starting solu-
tion for the second phase. LocalSearch is the local search algorithm embedded in the
procedure for solving the single-objective formulations. In fact, LocalSearch and Gen-
erateInitialSolution can be the same procedure, since an efficient algorithm for the first
phase could also be well suited for tackling the second phase; in that case, GenerateIni-
tialSolution could be a local search starting from a random initial solution. In the second
phase, the starting solution of LocalSearch is always taken to be the solution returned
in the previous iteration of the algorithm.

Let us explicitely remark that there is no need to restrict ourselves to true ”local
search” procedures. In fact, some single-objective versions of multiobjective problems
are solvable in polynomial time by exact methods; this is the case, for example, for
the multiobjective linear assignment problem and the multiobjective shortest path prob-
lem [18]. When faced with such a problem, it obviously may be preferable to use the
polynomial exact algorithm instead of a true local search.

The modification of the aggregated objective function ModifyObjFunc can be carried
out by changing the weights assigned to each objective.1 The change could be random
or gradual and the decision can be taken from a previous search space analysis of the
problem: if good solutions are clustered in the search space, gradual changes should
be preferable, since it has the advantage that the local optimum for aggregation � �
���
is close to the one for aggregation � � and that the local search for � ����� needs only few
improvement steps to identify a very good solution to � ����� . If good solutions are spread
all over the search space, a randomized change of weights may be more useful.

1 In case of different ranges of the objectives, a normalization of the objective function values,
for example, by range equalization factors [21] is needed.

Each time a local optimum is found by LocalSearch, it is stored in the archive � of
the set approximating the Pareto global optima set. Since the solution to the multiobjec-
tive problem is a set of all non-dominated objective vectors in � , the FilterArchive pro-
cedure is applied in a post-processing step; it deletes all dominated solutions and returns
� � . This last procedure can be excluded if it is applied every time the UpdateArchive
procedure is called.

One obvious advantage of TPLS is its modularity, which enables us to focus on
the solution methods embedded in GenerateInitialSolution and LocalSearch. Once the
choice for these operators is taken, the only numeric parameter needed is the number
of different aggregations of the objective functions. In a weighted sum approach, a
high number of weight combinations should return a better approximation to the Pareto
global optima set. However, some care must be taken, since increasing the number of
weight combinations may not be enough to escape from local optima, resulting in a
waste of computation time. A study of the trade-off between computation time and
solution quality should be carried out according to the real application and together
with the decision maker.

3 The Multiobjective TSP

Given a complete, weighted graph � � � ��������� � with � being the set of nodes, �
being the set of edges fully connecting the nodes, and � being a function that assigns
to each edge

� �	��
 �
��� a vector
� � ���� ������������� ��� � , where each element ������ corresponds to

a certain measure like distance, cost, etc. between nodes � and
 . For the following we
assume that � ���� ��� �� � for all pairs of nodes �	��
 and objectives � , that is, we consider
only symmetric problems. The multiobjective TSP is the problem of finding “minimal”
Hamiltonian circuits of the graph, that is, a set of closed tours visiting each of the � �� � � nodes of � exactly once; here “minimal” refers to the notion of Pareto optimality.

Usually there is not only one, but many Pareto global optimum solutions, which
form the Pareto global optima set. This set contains all solutions that are not dominated
by any other solution. The problem of finding the Pareto global optima set is ��� -
hard [5] and, since for many problems determining exact solutions quickly becomes
infeasible with increasing instance size, the goal typically shifts from identifying Pareto
global optima solutions to obtaining a good approximation to this set. For this latter
task, algorithms based on local search seem to be a suitable approach and already have
shown to yield good performance [7, 10].

In this article, we apply TPLS to the biobjective case, i.e., � � � . As benchmark
instances we use combinations of single-objective TSP instances that are available
at TSPLIB via http://www.iwr.uni-heidelberg.de/groups/comopt/
software/TSPLIB95/with 100 cities (kroA100 and kroB100), 150 cities (kroA150
and kroB150) and 200 cities (kroA200 and kroB200) as defined in [7]. For convenience,
were refer to them as instances kroAB100, kroAB150 and kroAB200, respectively. The
first instance was also attacked in [2, 7, 10] and at least for the approach by Jaszkiewicz
the solutions are publically available.

4 The Two-Phase Local Search for the Biobjective TSP

This section describes the details of how TPLS was adapted to the biobjective TSP.

4.1 First Phase

As argued before, it is likely to be best to generate the initial solution using a high
performing algorithm for the single objective TSP. Research on the single-objective
TSP has shown that Iterated Local Search (ILS) algorithms [14] are currently among
the best available metaheuristics [11]. ILS is based on the observation that local search
algorithms are easily trapped in a local optimum. Instead of restarting the local search
from a new, randomly generated solution, it perturbs the current local optimum, moving
it to a point beyond the neighborhood searched by the local search algorithm and, thus,
allowing it to escape from local optima. An acceptance criterion decides from which
local optimum solution the next perturbation is applied. We used an ILS algorithm that
was extensively analysed in [22]; at a high level, it can be described as follows:

– It uses a first improvement local search based on a 3-exchange neighborhood, where
all tours are neighbors of some tour � that differ in at most three edges;

– The perturbation is a double bridge move [15] that cuts the current tour at four
appropriately chosen edges into four sub-tours and reconnects these in a different
order to yield a new starting tour for the local search;

– The acceptance criterion accepts only a tour if it is better than the best one found
so far.

These steps are repeated for a given number of iterations. The local search applies
two additional speed-up techniques, which are a fixed radius nearest neighbor within
candidate lists of 40 nearest neighbors for each city [12] and don’t look bits [1]. Some
preliminary experiments showed that 50, 100 and 150 iterations for the number of per-
turbation steps was enough to obtain global optima solutions in short computation time
(lower than 0.1 seconds) for kroAB100,kroAB150 and kroAB200, respectively. We refer
to this procedure as 3.first.ils.

4.2 Second Phase

For the second step, various choices were tested for the LocalSearch. The reason was to
study the trade-off between computation time and solution quality for using a powerful
but time expensive local search or a less efficient but faster one. Specifically, for the
biobjective TSP, the following algorithms were tested:

– 2.best, a best improvement local search in the 2-exchange neighborhood (it tries to
find the best solution in the neighborhood obtained by exchanging two edges in the
current tour);

– 3.best, similar to 2.best but using the 3-exchange neighborhood;
– 2.first, first improvement local search with 2-exchange neighborhood;
– 3.first, similar to 2.first but using a 3-exchange neighborhood ;

Table 1. Average and standard deviation of the � measure and CPU time on instances kroAB100,
kroAB150, and kroAB200 for TPLS.

kroAB100 2.first 2.best 3.first 3.best 2.first.ils 2.best.ils 3.first.ils 3.best.ils

� Measure Avg. 0.5186 0.9288 0.9316 0.9319 0.9290 0.9288 0.9339 0.9318
Std. 0.0029 0.0009 0.0004 0.0002 0.0007 0.0006 0.0001 0.0002

CPU Avg. 0.41 0.41 0.53 0.72 0.69 0.72 6.95 6.01
time (sec) Std. 0.02 0.02 0.01 0.03 0.01 0.01 0.10 0.09

kroAB150 2.first 2.best 3.first 3.best 2.first.ils 2.best.ils 3.first.ils 3.best.ils

� Measure Avg. 0.5511 0.9364 0.9394 0.9395 0.9365 0.9365 0.9412 0.9395
Std. 0.0029 0.0005 0.0003 0.0002 0.0004 0.0005 0.0001 0.0002

CPU Avg. 1.47 1.44 1.75 2.19 2.58 2.86 29.91 26.71
time (sec) Std. 0.09 0.14 0.03 0.19 0.03 0.02 0.32 0.31

kroAB200 2.first 2.best 3.first 3.best 2.first.ils 2.best.ils 3.first.ils 3.best.ils

� Measure Avg. 0.5710 0.9404 0.9426 0.9428 0.9403 0.9403 0.9444 0.9428
Std. 0.0020 0.0004 0.0002 0.0001 0.0004 0.0004 0.0001 0.0001

CPU Avg. 4.04 4.13 4.79 6.30 7.13 8.55 120.30 110.37
time (sec) Std. 0.24 0.07 0.13 0.11 0.10 0.13 1.57 1.44

– 2.first.ils, similar to the 3.ils.first of phase one but using 2.first instead of the 3.first
local search algorithm;

– 3.first.ils, the same as in phase one;
– 2.best.ils similar to 2.first.ils but using the 2.best local search;
– 3.best.ils similar to 2.best.ils but using the 3.best local search.

All variants use nearest neighbor lists of length 40.
For the second phase a weighted sum approach was considered. The experiments re-

ported in [2, 16] showed a strong clustering of good solutions in these problems, which
indicates that changes of the weights in ModifyObjFunc should be smooth. In particular,
the weight of the first objective is decremented (i.e., the single objective used in Gen-
erateInitialSolutions) by ����� ��� and the weight of the second objective is incremented by
the same amount, where

� � �
is the number of aggregations tested. The latter was set

to 100, 150 and 200 for kroAB100, kroAB150 and kroAB200, respectively. The nearest
neighbor list was updated every time ModifyObjFunc was called. The code was written
in C and 50 runs were performed on each instance, using a Dual Athlon with 1200 MHz
and 512 MB of RAM running Suse Linux 7.3.

The expected value of the weighted Tchebycheff utility function measure (� mea-
sure) as proposed in [8] was computed for each of the runs.2 This measure evaluates a
non-dominated set by the expected value of the weighted Tchebycheff utility function

2 We used the code available at http://www-idss.cs.put.poznan.pl/
˜jaszkiewicz/mokp and adapted it to compile it with gcc 2.95.3 under Linux.

Table 2. Average of the � measure for 3.first.ils compared to the remaining variants of the TPLS
for instances kroAB100, kroAB150, kroAB200 (see text for details).

2.first 2.best 3.first 3.best 2.first.ils 2.best.ils 3.best.ils

kroAB100
3.first.ils Covers 50 � 87 � 65 � 59 � 87 � 88 � 59 �

Covered by 1 � 1 � 1 � 2 � 1 � 1 � 1 �
kroAB150
3.first.ils Covers 50 � 94 � 79 � 75 � 94 � 94 � 71 �

Covered by 0 � 1 � 1 � 1 � 1 � 1 � 1 �
kroAB200
3.first.ils Covers 62 � 95 � 82 � 79 � 95 � 96 � 80 �

Covered by 0 � 0 � 1 � 1 � 0 � 0 � 0 �

over a set of normalized weight vectors. The parameters for analysing the result of the
algorithm on instance kroAB100 were set following [10] and for instances kroAB150 and
kroAB200 the global optima values available on the TSPLIB were used. As worst tour
lenghts for the two last instances, the pairs (280000, 280000) and (370000, 370000), re-
spectively, were used. Table 1 presents the results regarding the � measure obtained by
the various variants tested. The results show that 3.first.ils gives the best performance in
terms of this measure, though it takes large computation times. 3.best.ils and 3.best are
almost equivalent, but the latter is much faster; both are closely followed regarding solu-
tion quality by 3.first. The results also suggest that the variants based on the 2-exchange
neighborhood are inferior to the variants based on the 3-exchange neighborhood.

The results according to the Coverage measure (� measure) [24] are presented in
Table 2. This measure compares pairs of non-dominated sets by calculating the frac-
tion of each set that is covered by the other set. In this case, the outcomes of 3.first.ils
were compared to each of the ones obtained by the remaining variants for LocalSearch.
Therefore, the row Covered by indicates how much of the outcome of 3.first.ils is dom-
inated by another variant and the row Covers says how much of the outcome of the
variant is covered by 3.first.ils. The results are presented averaged over the pairwise
comparison between all the runs of two variants. They clearly indicate a best perfor-
mance of 3.first.ils according to this measure.

One possible drawback of TPLS could be that non-supported solutions, i.e., solu-
tions which are not optimal for any weighted aggregation of the objectives, are not
obtained due to its aggressive search. However, the 3.first.ils obtained approximately an
average of 12 � non-supported points per run, which means that it still gets some points
which are inside the convex hull of the non-dominated set. To verify how much of the
remaining supported solutions were Pareto global optimaof solutions, we count how
many were present in the set of supported Pareto global optimal solutions obtained by
Borges and Hansen in [2] 3. Approximately 55 � of the supported solutions attained by
the TPLS belong to the supported Pareto global optimal solutions. However, since the

3 The set of supported Pareto global optima solutions is extracted from the supported Pareto
global optima solution to the three-objective instance combination of kroA100, kroB100 and
kroC100

Table 3. Average and standard deviation of the � measure, the � measure, and the CPU time on
instances kroAB100, kroAB150, kroAB200 for the D-TPLS.

kroAB100 3.first 3.best 2.first.ils 3.first.ils

� Measure Avg. 0.9327 0.9329 0.9303 0.9345
Std. 0.0002 0.0001 0.0004 0.0001

CPU Avg. 1.06 1.58 1.40 13.95
time (sec) Std. 0.02 0.04 0.04 0.19

� Measure
TPLS Covered by 42 � 58 � 42 � 56 �

Covers 17 � 23 � 21 � 34 �

kroAB150 3.first 3.best 2.first.ils 3.first.ils

� Measure Avg. 0.9399 0.9399 0.9375 0.9416
Std. 0.0002 0.0002 0.0003 0.0000

CPU Avg. 3.47 4.80 5.02 59.92
time (sec) Std. 0.06 0.10 0.14 0.35

� Measure
TPLS Covered by 38 � 45 � 47 � 42 �

Covers 20 � 27 � 18 � 22 �

kroAB200 3.first 3.best 2.first.ils 3.first.ils

� Measure Avg. 0.9432 0.9432 0.9412 0.9445
Std. 0.0001 0.0001 0.0002 0.0000

CPU Avg. 9.19 13.44 13.99 245.28
time (sec) Std. 0.10 0.28 0.16 4.74

� Measure
TPLS Covered by 38 � 44 � 46 � 33 �

Covers 18 � 25 � 17 � 17 �

data from Borges and Hansen is an incomplete set of Pareto gobal optimal solutions,
one does not know if the remaining supported solutions of the TPLS are also Pareto
global optimal solutions not found by Borges and Hansen.

5 Improvements on the Two-Phase Local Search

In this section, two further improvements on the TPLS are introduced: the Double Two-
Phase Local Search, and the Pareto Double Two-Phase Local Search.

5.1 The Double Two-Phase Local Search

TPLS starts from a very good solution for only one of the objectives. Hence, one may
expect a bias of the non-dominated points generated towards this first objective in the

Table 4. Average and standard deviation of the � measure, the � measure, and the CPU time, on
instances kroAB100,kroAB150, kroAB200 for the PD-TPLS.

kroAB100 3.first 3.best 2.first.ils 3.first.ils

� Measure Avg. 0.9335 0.9337 0.9314 0.9351
Std. 0.0002 0.0001 0.0003 0.0000

� Measure
D-TPLS Covered by 50 � 60 � 54 � 62 �

Covers 22 � 21 � 20 � 13 �
CPU Avg. 1.26 1.72 1.59 14.14
time (sec) Std. 0.02 0.01 0.03 0.24

kroAB150 3.first 3.best 2.first.ils 3.first.ils

� Measure Avg. 0.9404 0.9405 0.9382 0.9420
Std. 0.0002 0.0001 0.0003 0.0000

� Measure
D-TPLS Covered by 51 � 59 � 52 � 51 �

Covers 25 � 22 � 25 � 13 �
CPU Avg. 4.32 5.62 5.99 60.64
time (sec) Std. 0.11 0.18 0.14 0.79

kroAB200 3.first 3.best 2.first.ils 3.first.ils

� Measure Avg. 0.9436 0.9436 0.9416 0.9450
Std. 0.0001 0.0001 0.0003 0.0000

� Measure
D-TPLS Covered by 49 � 56 � 46 � 47 �

Covers 23 � 19 � 29 � 12 �
CPU Avg. 11.87 16.08 17.11 248.45
time (sec) Std. 0.44 0.44 0.57 6.90

second phase, resulting in a skewed set towards that objective in detriment of the other.
This skewedness is exemplified by the fact that only 3.first.ils (but not the other local
searches) was able, when starting the second phase from an optimal solution for the
first objective, to obtain also the optimal solution of the second objective in most of the
runs. One way of overcoming this skewedness effect is to apply the TPLS starting once
from a solution for each single objective and then to filter the non-dominated solutions
from the union of both sets of solutions. We call this procedure the Double Two-Phase
Local Search (D-TPLS).

We run experiments with 2.first.ils, 3.first, 3.best and 3.first.ils for the LocalSearch
using, as in Section 4, 50 trials per instance and the same number of aggregations. Table
3 presents the average and standard deviation of the � measure and computation time
on the instances. In addition, the � measure [24] is presented given as the average of
all pairwise comparisons between the TPLS and D-TPLS for each local search used in
the second phase. Hence, the row Covered by indicates the relative frequency by which

Table 5. Comparison of the PD-TPLS (3.first.ils) with GSL in terms of average and standard
deviation of � measure and computation time, and � measure values on the set of instances
tackled in [10].

kroAB100 kroAC100 kroAD100 kroAE100 kroBC100

� Measure
PD-TPLS Avg. 0.9351 0.9323 0.9344 0.9380 0.9361

Std. 0.0000 0.0000 0.0000 0.0001 0.0000
GLS 0.9351 0.9321 0.9342 0.9379 0.9359

� Measure
GLS Covered by 48 � 59 � 61 � 55 � 53 �

Covers 29 � 21 � 20 � 25 � 20 �
CPU Avg. 14.14 13.72 13.69 13.70 14.65
time (sec) Std. 0.24 0.10 0.10 0.10 0.30

kroBD100 kroBE100 kroCD100 kroCE100 kroDE100

� Measure
PD-TPLS Avg. 0.9347 0.9335 0.9390 0.9352 0.9339

Std. 0.0000 0.0001 0.0000 0.0000 0.0000
GLS 0.9344 0.9334 0.9389 0.9350 0.9338

� Measure
GLS Covered by 56 � 54 � 55 � 58 � 54 �

Covers 23 � 20 � 23 � 23 � 20 �
CPU Avg. 14.86 14.50 14.02 13.23 14.14
time (sec) Std. 0.28 0.32 0.15 0.08 0.06

the outcome of TPLS is covered by D-TPLS and the row Covers gives the frequency by
which the outcome of D-TPLS is covered by TPLS. The computational results indicate
a general better performance of D-TPLS when compared to the same TPLS version,
although at the cost of doubling the computation time. By analysing further the results
of D-TPLS, approximately 25 � of the solutions were considered as non-supported, and
about 71 � of the supported solutions were the same as in [2].

5.2 The Pareto Double Two-Phase Local Search

A disadvantage of the D-TPLS and TPLS is that in the local neighborhood of each
solution they return (there is a maximum of � � � � tours returned by D-PTLS and

� � �
in

the case of TPLS), there may be additional, non-dominated solutions, which are missed
by the aggregation used. Therefore, intuitively D-TPLS can be further enhanced by
searching for non-dominated solutions in the neighborhood of the solutions returned
by LocalSearch. For this aim a 2-opt local search that accepts solutions which are not
dominated by the current local optimum in both objectives was applied.4 This local
search is applied after a local optimum is found on each aggregation. We call the so

4 This algorithm was studied in [16]. An alternative to this approach would be to increase the
number of aggregations; this is studied in Section 6.

enhanced D-TPLS the Pareto Double Two-Phase Local Search (PD-TPLS). A total of
50 runs of the PD-TPLS were performed using the same four variants of LocalSearch
as in Section 5.1 and again analysed in terms of � and � measure.

The results are given in Table 4 and one can observe that, in fact, the PD-TPLS im-
proves on D-TPLS and, hence, also on TPLS. Interestingly, the increase in computation
time is rather small. Approximately 90% of the solutions were non-supported, and the
same number of supported solutions as in D-TPLS were also found in [2].

5.3 Comparisons to State-of-the-art Algorithms

One important aspect of a new algorithmic proposal is to know how competitive it
is compared to state-of-the-art algorithms. Apparently, the Genetic Local Search by
Jaszkiewicz (GLS) was the best performing algorithm for the biobjective TSP [10]. GLS
combines ideas from evolutionary algorithms (recombination, population of solutions),
local search (definition of neighborhood) with modifications of the aggregation of the
objective functions. The algorithm proceeds by first generating an initial population
of solutions where each solution is optimized by a local search method using randomly
generated weights to aggregate the objective functions as indicated in Equation 1. Then,
at each iteration, a sub-set of the best solutions from the full population, according to
a random weighted aggregation of the objective function, is extracted. From this sub-
set, two solutions are randomly chosen and recombined. A local search is then applied
to the new solution and added to the population if it is better then the worst solution
in the full population. This procedure was able to outperform several multiobjective
metaheuristics on a set of 50 and 100 city instances [10].

The performance of PD-TPLS and GLS were compared in all possible pairwise
combinations of the instances kroA100, kroB100, kroC100, kroD100 and kroE100. The
outcomes of GLS were taken from http://www-idss.cs.put.poznan.pl/
˜jaszkiewicz/motsp. The PD-TPLS ran using the 3.first.ils variants for the Lo-
calSearch 50 times per instance. The results, which are given in Table 5, show the
average data and standard deviation of the � measure on the outcomes of PD-TPLS
and GLS for each instance. The average and standard deviation of computation times
for PD-TPLS are also reported. In addition the � measure was also reported for each
pair. In this case, the row Covered by presents the frequency by which the outcome
of GLS is covered by PD-TPLS and the row Covers gives the frequency by which the
outcome of PD-TPLS is covered by GLS. The results indicate that, according to the
� measure, PD-TPLS performs slightly better than GLS; in addition, when consider-
ing the � measure, the advantage of PD-TPLS over GLS appears to be even stronger.
Hence, we can conclude that our PD-TPLS approach definitely appears to be competi-
tive, if not even slightly better, than current state-of- the-art algorithms. For further com-
parisons, the outcomes of PD-TPLS are available at http://www.intellektik.
informatik.tu-darmstadt.de/˜lpaquete/TSP.

6 Further Analysis

This section presents results of a further analysis on the influence of the number of
aggregations and of the number of iterations in 3.first.ils on the solution quality (as
judged by the � and � measures) and on the computation time.

6.1 Study on the Number of Aggregations

An interesting question is if one can get significant further improvements by increasing
the number of aggregations, which should result in a potentially larger number of non-
dominated solutions. To investigate this effect on algorithm performance, 50 runs were
performed for each of 3.first, 3.best, 2.first.ils and 3.first.ils as LocalSearch variants on
instance kroAB100 using

� � � ��������� � ������� � ������� �	�	������
 .
Table 6 shows the average and standard deviation of the � measure for each variant,

number of aggregations and instance. One can observe that, when compared to results
obtained by 100 aggregations, given in Table 4, only minor or no improvement at all
was found, but that increasing

� � �
leads to significantly larger computation times.

Table 6. Average and standard deviation of � measure and computation time on instance
kroAB100 considering 500, 1000, 1500 and 2000 aggregations for PD-TPLS.

3.first 500 1000 1500 2000 3.best 500 1000 1500 2000
� Measure � Measure
Avg. 0.9337 0.9338 0.9338 0.9338 Avg. 0.9338 0.9338 0.9338 0.9338
Std. 0.0001 0.0002 0.0002 0.0002 Std. 0.0001 0.0001 0.0001 0.0001
CPU time CPU time
Avg. 5.42 10.85 16.52 22.71 Avg. 5.96 11.45 17.39 23.55
Std. 0.19 0.27 0.32 0.98 Std. 0.11 0.27 0.66 0.60

2.first.ils 500 1000 1500 2000 3.first.ils 500 1000 1500 2000
� Measure � Measure
Avg. 0.9316 0.9315 0.9316 0.9316 Avg. 0.9352 0.9352 0.9352 0.9352
Std. 0.0004 0.0004 0.0004 0.0004 Std. 0.0000 0.0000 0.0000 0.0000
CPU time CPU time
Avg. 7.17 14.42 21.77 26.10 Avg. 69.53 139.30 209.01 279.88
Std. 0.20 0.54 0.91 1.29 Std. 0.46 0.64 0.58 0.96

6.2 Study of the Number of Search Steps of 3.first.ils on the LocalSearch

3.first.ils is used both in GenerateInitialSolution and LocalSearch, but so far no explo-
ration of alternative parameter settings for the number of iterations of the ILS was car-
ried out. Hence, it is interesting to observe how much the performance is affected by an
increase of the number of iterations of 3.first.ils. A total of 50 runs were performed for
each of the following parameters � � � � � � � � � � � � � ��� � ��
 , where � � is the number of itera-
tions used in the previous experiments on instances kroAB100, kroAB150 and kroAB200
(50, 100, and 150, respectively).

Table 7 shows the average and standard deviation of the � measure for each number
of search steps and each instance. The � measure was also applied to compare between
the algorithm using the original step value and the modified one. Therefore, the row
Covered by presents how much of the outcome of the algorithm using the original num-
ber of steps is covered by the modified one, and the row Covers presents how much of

Table 7. Average and standard deviation of � measure, � measure and computation time on the
instances kroAB100, kroAB150, kroAB200 considering fifth (� � ���), half (� � ���) and double (��� �
)
of the steps used in GenerateInitialSolution (�
) of the PD-TPLS.

� � � � � � � � �
	 ��� �
	 � � � � � � � � �
	 ��� �
	
kroAB100 10 25 50 100 kroAB150 20 50 100 200
� Measure � Measure
Avg. 0.9350 0.9351 0.9351 0.9351 Avg. 0.9419 0.9420 0.9420 0.9420
Std. 0.0001 0.0000 0.0000 0.0000 Std. 0.0000 0.0000 0.0000 0.0000

� Measure � Measure
Covered by 40 � 57 � - 69 � Covered by 29 � 47 � - 64 �
Covers 63 � 64 � - 69 � Covers 67 � 60 � - 57 �
CPU time CPU time
Avg. 3.68 7.58 14.14 26.97 Avg. 15.05 32.12 60.64 116.87
Std. 0.02 0.04 0.24 0.13 Std. 0.07 0.29 0.79 0.50

� � � � � � � � �
	 ��� �
	
kroAB200 30 75 150 300
� Measure
Avg. 0.9449 0.9450 0.9450 0.9450
Std. 0.0000 0.0000 0.0000 0.0000

� Measure
Covered by 21 � 40 � - 61 �
Covers 70 � 58 � - 48 �
CPU time
Avg. 57.37 127.68 248.45 477.89
Std. 0.90 2.42 6.90 10.22

the outcome of the modified version is covered by the original. Also average and stan-
dard deviation of the computation time is reported. The results with the original step
value are presented for reference.

The results indicate that, according to the measures used, almost no performance
degradation is observable when using half of the iterations for the ILS, but that, as ex-
pected, the computation time could be roughly halved. Allowing still less iterations for
ILS degrades somewhat more the solution quality, but computation times drop further.
However, the performance is still much better than with other choices for LocalSearch
(compare with Table 4). A further increase of the number of ILS iterations seems not to
significantly improve performance, probably because the algorithm is already obtaining
near-optimal solutions.

7 Conclusions and Further Work

A new two-phase local search algorithm was proposed for tackling biobjective combi-
natorial optimization problems. There are three main ideas behind this approach. Firstly,
one exploits to the maximum possible the excellent performance of local search algo-
rithms for single-objective problems. Secondly, one exploits a chain of aggregations of
biobjective problems into single-objective ones and previously obtained good solutions
to generate new, non-dominated solutions. Thirdly, we want to have a procedure that is

at the same time easy to understand and flexible enough to allow for enhancements that
can convert it by minor modifications into higher performance algorithms.

As a first step, the impact of the local search algorithm in the second phase was
performed. We found that more powerful local search algorithms results indeed also
in better solutions, but at the cost of more computation time. We also proposed two
enhancements of the TPLS, which finally lead to the PD-TPLS, which was shown to
perform on par or even slightly better than the so far best known algorithm for the
biobjective TSP.

The good results and low computation time obtained by this approach can be ex-
plained by the high level of clustering of good solutions found in these problems, as
already observed in [2, 16]. We intend to extend this approach to other biobjective com-
binatorial optimization problems in which this clustering does not hold or study prob-
lems with different correlations between the cost matrices.

We also intend to extend this approach to more than two objectives. One can, indeed,
see that a generalization of the current approach to � objectives can be easily formalized
by performing

	�� 	 � ���� runs of PD-TPLS. Although the evident quadratic increase on the
number of runs, one should also not expect to find practical applications with a large
number of objectives. If this is the case, the Pareto global optima set could be of an
infeasible size, and it should be preferable to perform a pre-defined number of runs of
the ILS using several aggregations of the objectives with equally dispersed weights.

In addition, we would like to use other measures which allows for a sound statistical
analysis of our results. To this aim we will adopt the attainment functions methodology
[4] for experimental analysis, as already done in [17, 20].

Acknowledgements We would like to thank Michael Hansen and Pedro Borges for the provid-
ing the supported Pareto global optimal solutions, and Andrzej Jaszkiewicz for discussions about
the � measure code. Finally, we also thank the suggestions given by the referees of this paper.
This work was supported by the Metaheuristics Network, a Research Training Network funded
by the Improving Human Potential programme of the CEC, grant HPRN-CT-1999-00106. The in-
formation provided is the sole responsibility of the authors and does not reflect the Community’s
opinion. The Community is not responsible for any use that might be made of data appearing in
this publication.

References

1. J.L. Bentley. Fast algorithms for geometric traveling salesman problems. ORSA Journal on
Computing, 4(4):387–411, 1992.

2. P. C. Borges and P. H. Hansen. A study of global convexity for a multiple objective trav-
elling salesman problem. In C.C. Ribeiro and P. Hansen, editors, Essays and Surveys in
Metaheuristics, pages 129–150. Kluwer, 2000.

3. P. Czyzak and A. Jaszkiewicz. Pareto simulated annealing - a metaheuristic technique for
multiple objective combinatorial optimization. Journal of Multi-Criteria Decision Analysis,
7:34–47, 1998.

4. V. G. da Fonseca, C. Fonseca, and A. Hall. Inferential performance assessment of stochastic
optimisers and the attainment function. In E. Zitzler and et al., editors, Evolutionary Multi-
Criterion Optimization (EMO’2001), LNCS 1993, pages 213–225. Springer Verlag, 2001.

5. M. Ehrgott. Approximation algorithms for combinatorial multicriteria problems. Interna-
tional Transactions in Operations Research, 7:5–31, 2000.

6. X. Gandibleux, N. Mezdaoui, and A. Freville. A tabu search procedure to solve multiobjec-
tive combinatorial optimization problems. In R. Caballero et al., editor, Advances in Multiple
Objective and Goal Programming, LNEMS, pages 291–300. Springer Verlag, 1997.

7. M.P. Hansen. Use of subsitute scalarizing functions to guide a local search base heuristics:
the case of moTSP. Journal of Heuristics, 6:419–431, 2000.

8. M.P. Hansen and A. Jaszkiewicz. Evaluating the quality of approximations to the non-
dominated set. Technical Report IMM-REP-1998-7, Institute of Mathematical Modelling,
Technical University of Denmark, Lyngby, Denmark, 1998.

9. H. Ishibuchi and T. Murata. Multi-objective genetic local search algoritm. In T. Fukuda and
T. Furuhashi, editors, Proceedings of the 1996 International Conference on Evolutionary
Optimization, pages 119–124, Nagoya , Japan, 1996. IEEE.

10. A. Jaszkiewicz. Genetic local search for multiple objective combinatorial optimization. Eu-
ropean Journal of Operational Research, 1(137):50–71, 2002.

11. D. S. Johnson and L. A. McGeoch. Experimental analysis of heuristics for the STSP. In
G. Gutin and A. Punnen, editors, The Traveling Salesman Problem and its Variations, pages
369–443. Kluwer Academic Publishers, 2002.

12. D.S. Johnson and L.A. McGeoch. The travelling salesman problem: A case study in local
optimization. In E.H.L. Aarts and J.K. Lenstra, editors, Local Search in Combinatorial
Optimization, pages 215–310. John Wiley & Sons, Chichester, UK, 1997.

13. J. Knowles and D. Corne. The pareto archived evolution strategy: A new baseline algorithm
for pareto multiobjective optimisation. In Proceedings of CEC’99, pages 98–105, 1999.

14. H. R. Lourenço, O. Martin, and T. Stützle. Iterated local search. In F. Glover and G. Kochen-
berger, editors, Handbook of Metaheuristics, volume 57 of International Series in Operations
Research & Management Science, pages 321–353. Kluwer Academic Publishers, Norwell,
MA, 2002.

15. O. Martin, S.W. Otto, and E.W. Felten. Large-step markov chains for the traveling salesman
problem. INFORMS Journal on Computing, 8(1):1–15, 1996.

16. L. Paquete, M. Chiarandini, and T. Stützle. A study of local optima in the biojective travel-
ling salesman problem. Technical Report AIDA-02-07, FG Intellektik, FB Informatik, TU
Darmstadt, Germany, 2002.

17. L. Paquete and C. Fonseca. A study of examination timetabling with multiobjective evo-
lutionary algorithms. In 4th Metaheuristics International Conference (MIC 2001), pages
149–154, Porto, 2001.

18. P. Serafini. Some considerations about computational complexity for multiobjective combi-
natorial problems. In Recent Advances and Historical Development of Vector Optimization,
LNEMS, pages 222–231. Springer-Verlag, 1986.

19. P. Serafini. Simulated annealing for multiple objective optimization problems. In Multiple
Criteria Decision Making, LNEMS, pages 283–292. Springer-Verlag, 1994.

20. K. Shaw, C. Fonseca, A. Nortcliffe, M. Thompson, J. Love, and P. Fleming. Assessing the
performance of multiobjetive genetic algorithms for optimization of a batch process schedul-
ing problem. In Proceeding of CEC’99, pages 37–45, 1999.

21. R.E. Steuer. Multiple Criteria Optimization: Theory, Computation and Application. Wiley
Series in Probability and Mathematical Statistics. John Wiley & Sons, New York, 1986.

22. T. Stützle and H. Hoos. Analyzing the run-time behaviour of iterated local search for the
TSP. In III Metaheuristic International Conference (MIC’99), pages 1–6, 1999.

23. D. Tuyttens, J. Teghem, P. Fortemps, and K. Van Nieuwenhuyze. Performance of the MOSA
method for the bicriteria assignment problem. Jornal of Heuristics, 6:295–310, 2000.

24. E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: a comparative case study
and the strength pareto approach. IEEE Trans. on Evol. Comput., 4(3):257–271, 1999.

