
An Experimental Investigation of Iterated Local Search
for Coloring Graphs

Luis Paquete and Thomas Stützle

Darmstadt University of Technology, Computer Science Department, Intellectics Group
Alexanderstr. 10, 64283 Darmstadt

Abstract. Graph coloring is a well known problem from graph theory that, when
attacking it with local search algorithms, is typically treated as a series of con-
straint satisfaction problems: for a given number of colors

�
one has to find a fea-

sible coloring; once such a coloring is found, the number of colors is decreased
and the local search starts again. Here we explore the application of Iterated Lo-
cal Search on the graph coloring problem. Iterated Local Search is a simple and
powerful metaheuristic that has shown very good results for a variety of opti-
mization problems. In our research we investigated several perturbation schemes
and present computational results on a widely used set of benchmarks problems, a
sub-set of those available from the DIMACS benchmark suite. Our results suggest
that Iterated Local Search is particularly promising on hard, structured graphs.

1 Introduction

The Graph Coloring Problem (GCP) is a well known combinatorial problem defined as
follows: Given a directed graph �������	��

� , where � is the set of � ������� vertices and

�������� is the set of edges, and an integer � (number of colors), find a mapping��� ����! "�$#%�'&(&)&)�$� such that for each * +,�.-"/102
 we have

� �3-4�65� � �7+8� . In fact, this
problem statement corresponds to the decision version, where we try to find a solution,
satisfying an additional constraint on the value of the objective function. In the opti-
mization counterpart, the GCP can be defined as to find the minimum � , that is to find
the chromatic number 9;: of � .

The GCP is an interesting problem for theory and practice. In fact, several classes
of real-life problems such as examination timetabling [1] and frequency assignment [2]
can be modelled as GCPs. Yet, it cannot be expected that an algorithm can find, in poly-
nomial time, a solution to any GCP instance, because it is <>= -hard [3]. In fact, exact
algorithms can solve only small size instances [4]. For larger instances approximate
algorithms have to be used and a large number of such algorithms has been proposed
[5–10].

This article explores the application of Iterated Local Search (ILS) [11] to the GCP.
ILS consists in the iterative application of a local search procedure to starting solu-
tions that are obtained by the previous local optimum through a solution perturbation.
So far, ILS has only been applied to optimization problems. In this article we apply
ILS to the decision variant of the GCP. This is no limitation, because the optimization
variant can be stated as a sequence of constraint satisfaction problems, where � is be-
ing decremented sequentially by one until no admissible mapping exists, meaning that

122

9 :�� � � . In this case, the problem is attacked as a constraint satisfaction prob-
lem. The good performance of our ILS especially on structured graphs suggests that
it may be worthwhile to also consider applications of ILS to other types of constraint
satisfaction problems or to the well known satisfiability problem in propositional logic.

The article is structured as follows. Section 2 presents a review of approximation
algorithms for the GCP and Section 3 introduces available benchmark sets. Section 4
introduces ILS and describes some details of the ILS implementation for the GCP. Sec-
tion 5 presents the experimental results and we conclude in Section 6.

2 Approximate algorithms for graph coloring

Approximate algorithms for the GCP fall into two main classes, construction heuristics
and local search algorithms.

Construction heuristics start from an empty solution and successively augment a
partial coloring until the full graph is colored. During the solution construction these
algorithms maintain feasibility that is, they return a conflict free coloring. Well known
construction heuristics are the Brelaz heuristic [5], the Recursive Largest First (RLF)
heuristic [10] or iterated, randomized construction heuristics like the Iterated Greedy
algorithm [12].

Local search for the GCP starts at some initial, inconsistent color assignment and
iteratively moves to neighboring solutions, trying to reduce the number of conflicts. A
pair of vertices ���$���4� is in conflict, if both are assigned the same color and ��� ���4� 0

 . In fact, local search applied to the GCP iteratively tries to repair the current color
assignment guided by an evaluation function that counts the total number of conflicts.
In case a candidate solution with zero conflicts is encountered, this candidate solution
corresponds to a feasible coloring of the graph.

When treating the GCP as a decision problem, a commonly used neighborhood is
the 1-opt neighborhood that in each step changes the color assignment of exactly one
vertex. For searching the 1-opt neighborhood, two different local search architectures
exist. The first is based on the min-conflicts heuristic (A1): In each local search step,
a vertex that is in conflict is chosen at random. To this vertex a color is assigned that
minimizes the number of conflicts [13]. The second scheme (A2) examines all pairs of
vertices and colors �3-	�$���4� and performs the move with the maximal reduction of the
number of conflicts; if several such moves exist, one is chosen randomly [14, 6]. This
latter neighborhood is often further reduced by considering moves that only affect ver-
tices that are currently involved in a conflict (A2’). Note that A2 and A2’ architectures
are greedier than the min-conflicts architecture, because at each step one among a larger
set of candidate moves is choosen.

In the simplest case, local search algorithms accept only improving moves and they
terminate in local optima. The most successful technique to avoid this problem is a
family of algorithm schemata that is often called metaheuristics. Among the first meta-
heuristic approaches to the GCP were Simulated Annealing implementations. Simu-
lated Annealing was first applied to the GCP by Chams et al. [15] and was intensively
tested by Johnson et al. [9] on random graphs. Among the most widely applied meta-
heuristics to the GCP are Tabu Search implementations. The first implementations of

123

Tabu Search were due to Hertz and de Werra [8]. More recently, Hao, Dorne, and Galin-
ier [14, 7] presented the most performing Tabu Search implementations, based on the
A2’ local search. The solution of the GCP by Evolutionary Algorithms was proposed
by Davis [16], who reported several crossover operators combined with several order-
ing of vertices. Eiben et al. [17] applied an Adaptive Evolutionary Algorithm to the
GCP; this algorithm changes periodically the evaluation function to avoid local optima.
More recently, Laguna and Martı́ [18] proposed an application of GRASP to the GCP
and presented good results for sparse graphs. Finally, several hybrid approaches were
proposed. These typically combine Evolutionary Algorithms with Tabu Search imple-
mentations. The first such approach for the GCP was proposed by Fleurent and Ferland
[19].

The best computational results so far have been obtained by the Hybrid Evolution-
ary Algorithm (HEA) by Galinier and Hao [7]. In their algorithm, the initial population
is generated by a greedy saturation algorithm. After initialization, two solutions are
chosen randomly and a specific crossover operator generates a new solution based on
the information of the latter. This operator builds a partial solution by exchanging sub-
sets of the color class sets of the two chosen solutions and fills the unassigned vertices
in a random fashion to obtain a complete solution. The new solution is then improved
by applying the Tabu Search algorithm for a certain number of � iterations and then
re-inserted into the set of solutions. Galinier and Hao have reported very good perfor-
mance and outperformed the Tabu Search, which previously was reported to be among
the most effective local search algorithms for the GCP, on a number of hard benchmark
instances.

3 Benchmark Problems

Many different benchmark problems and instance sets for the GCP are available at
Joseph Culberson’s Graph Coloring Page (http://www.cs.ualberta.ca/˜joe/Coloring/)and
Michael Trick’s Graph Coloring Page (http://mat.gsia.cmu.edu/COLOR/color.html).
The most prominent benchmark set is that of the Second DIMACS Implementation
Challenge on Cliques, Coloring, and Satisfiability, which is available on the web site
http://mat.gsia.cmu.edu/challenge.html. Many of these instances were generated in way
such that the chromatic number is known, like the Leighton and the Flat graphs. The
Leighton graphs were generated by a procedure that uses the number of vertices, the
desired chromatic number, the average vertex degree and a random vector of integers to
generate a certain number of cliques. The Flat graphs were generated in a way such that
the set of vertices is partitioned into � almost equal sized sets. The number of edges is
close to the expected number of edges given a certain probability � and partitioning. A
flatness parameter controls the variation of the vertex degree. The DIMACS instances
have a flatness parameter equal to 0, which means that the graph is uniform.

Another prominent class of benchmark instances available from the DIMACS site
are random graphs, where each edge is included into the graph with a probability � (the
chromatic number of these graphs is not known). These graphs were initially proposed
by Johnson et al. in their experimental evaluation of Simulated Annealing [9] and were
used since then in a large number of studies.

124

procedure Iterated Local Search��� = GenerateInitialSolution()��� LocalSearch
� �����

repeat��	
� Perturbation
� ��� history ���	 	
� LocalSearch
� ��	
�

��� AcceptanceCriterion
� ������	 	�� history �

until termination condition met
end

Fig. 1. Pseudocode of an iterated local search procedure (ILS)

4 Iterated Local Search for coloring graphs

ILS [11] is based on the simple idea of improving a local search procedure by provid-
ing new starting solutions which are obtained from perturbations of the current solution.
This perturbation must be sufficiently strong to allow the local search to explore differ-
ent solutions, but also weak enough to prevent random restart. ILS is appealing both due
to its simplicity and due to the very good results obtained, for example, the Traveling
Salesman Problem [20], Graph-Partitioning [21], and Scheduling Problems [11].

To apply an ILS algorithm, four components have to be specified. These are a pro-
cedure GenerateInitialSolution() that generates an initial solution ��� , a procedure Per-
turbation, that modifies the current solution � leading to some intermediate solution ��� ,
a procedure LocalSearch that returns an improved solution ��� � , and an AcceptanceCri-
terion that decides to which solution the next perturbation is applied. An algorithmic
scheme for ILS is given in Figure 1.

In principle, any local search algorithm can be used, but the performance of the ILS
algorithm with respect to solution quality and computation speed depends strongly on
the one chosen. Very often an iterated descent algorithm is taken, but it is also possible
to apply more sophisticated local search algorithms like Tabu Search, as done in our
case.

The perturbation mechanism should be chosen strong enough to allow to leave the
current local minimum and to allow the local search to explore different solutions. At
the same time, the modification should be weak enough to keep enough characteristics
of the current local minimum.

The procedure AcceptanceCriterion is used to decide from which solution the search
is continued by applying the next pertubation. One important aspect of the acceptance
criterion and the perturbation is to introduce a bias between intensification and diver-
sification of the search. Intensification of the search around the best found solution is
achieved, for example, by applying the perturbation always to the best found solution
and using small perturbations. Diversification is achieved, in the extreme case, by ac-
cepting every new solution ��� � and applying large perturbations.

4.1 Iterated Local Search operators

In our application of ILS to the GCP we focused mainly on the choice of the local
search and the perturbation operator.

125

Local Search For the local search we considered to apply one based on local search
architecture A1 (see Section 2) and one based on A2 and A2’, respectively. In addition
to a plain iterative improvement local search, we implemented Tabu Search versions for
both local search architectures. In fact, after some initial experiments it was found that
our ILS with the Tabu Search implementation based on A2’ performed significantly
better than the other variants. Yet, this improved performance is only possible because
of the use of speed-up techniques for the neighborhood evaluation [19]: The implemen-
tation uses a two-dimensional table of size ���4� where each entry � ��� ���4� stores the
effect on the evaluation function incurred by changing the color of vertex � to color � .
Each time a move is performed, only the part of the table that is affected by the move
is updated. This table has to be initialised in � �3������� � , but each update of the matrix
then only takes � �7���"� � in the worst case (for sparse graphs even faster); in fact the
complexity of each iteration is the same as for implementations of architecture A1. For
the setting of the tabu list lenght we followed the scheme in [7]: the length of tabu list
was taken as �
	"����
������ � ��� ��� ��� � , where ��� is the set of conflicting vertices.

Perturbation For the perturbation we considered four different possibilities.

P1, random moves: Each perturbation consists of assigning to some vertices randomly
chosen colors.

P2, adding edges: P2 consists of adding a certain number of edges during some number
of iterations, leading to a modification of the instance definition. After the pertur-
bation, the additional edges are removed again.

P3, conflict vertices: Assignments of randomly chosen colors to conflicting vertices.
P4, directed diversification: We perform � ������� moves using the Tabu Search procedure

with long tabu list settings and mix this strategy with random moves. In fact, at each
step a random choice is made whether we execute a random search step (such a step
is done with a probability ���) or a Tabu Search step (with probability 1- ���).

One particularity of all the perturbations is that they also use the move table from
the local search in the perturbation. The reason is that, depending on the length of the
perturbation, this can save a significant amount of computation time, because the re-
initialisation of the move table is avoided in this case.

Preliminary experiments showed that P4 was the most promising perturbation. An
investigation of the tradeoffs regarding the parameter settings for P4 showed that the
larger is � ������� , the lower should be � � to avoid that the final solution becomes too close
to a random initial solution. Two more details are note-worthy: First, the tabu list is
maintained during the perturbation as during the standard Tabu Search procedure. This
has the effect that the perturbation moves (including random moves) cannot directly be
undone after the perturbation. Second, the perturbation is triggered, if the local search
is deemed to be stuck as indicated by the fact that for � � � ���!� iterations the Tabu Search
could not find improved solutions.

Initial solution For the initial solution we considered random initial solutions and
greedy solutions. Since for the hardest instances we could not observe a significant dif-
ference in performance, we used random initial solutions for the following experiments.

126

Acceptance criteria The Acceptance criteria is a straightforward procedure that uses
one of the following rules: accept every new solution or always apply the perturbation
to best solution found so far in the search. Some preliminary experiments were done to
compare both acceptance criteria, and no significant difference was detected. Thus, we
choose random walk which is less expensive from a computational point of view.

5 Experimental results

5.1 Peak performance

In this section we give some performance results of the ILS obtained by a limited pa-
rameter tuning effort. Here we report peak performance, that is, the best performance
we obtained for the studied parameter settings. Observing peak performance is impor-
tant, because one hint on the usefulness of a technique is that at least for some instance
classes the state-of-the-art performance can be matched or even be improved upon. In
fact, many other articles report peak performance after significant parameter tuning ef-
forts like it is the case for the Hybrid Evolutionary Algorithm (HEA) and the Tabu
Search presented in [7]. Since in that article the best results so far were reported for
several hard benchmark problems, we compare our results to HEA as far as possible.
We report results on some Leighton and Flat graphs, which are known to be very hard,
and few Random graphs.

In some preliminary experiments, we first identified good parameter settings for
the Tabu Search algorithm that is embedded into our ILS. We found that best per-
formance was obtained by the setting of � � �� and

�
= � & � with a A2’ architec-

ture. Then, at a next step, the Tabu Search procedure was kept fixed (as a black box)
and we performed experiments with different parameter settings for the perturbation.
Regarding the perturbation, we found that P4 gave the apparently best performance
and we decided to run detailed experiments with all possible combinations of param-
eters settings governing perturbation P4 taken from � � � ���������" �� � � � � #�� � � � ���	� � � ��
 ,

� ������� ����
 ��
� ��
 ��
� � � ��� �$# � ����
 , � � ����� & #	�%��� &��%��� &�����
 . This results in a total of 36 ex-
periments.

Table 1 presents the results obtained in 50 runs of the Tabu Search (as said above,
these results were obtained after fine-tuning parameters � and

�
) and the best results

found in 25 runs of each combination of parameter settings for the ILS. Each trial was
given a maximum of ten million local search iterations. For a given number of colors,
the results indicated are the average number of iterations in the successful runs and
the fraction of successful runs. The ILS presents an additional column with the best
parameter settings. The HEA results are taken from [7].

When comparing the peak performance obtained by ILS with Tabu Search, we ob-
serve that ILS obtains complete colorings in less iterations than Tabu Search in al-
most all instances. The most marked difference in favor of ILS is observed for the
instance le450 15c.col which is solved in all 25 runs by ILS, while the Tabu Search in
a large fraction of the runs stopped unsuccessfully. However, on the runs on instances
DSJC250.5.col and flat300 28 0.col, ILS obtained an inferior number of colorings than
Tabu Search. One possible reason could be the efficiency of the Tabu Search, giving no
opportunity to ILS to outperform its underlying local search.

127

Table 1. Experimental results. Given are the instance name, the number of colors allowed, and
for each algorithm the average number of iterations in the successful runs and the percentage of
successful runs.

Tabu Search ILS HEA
Instances

�
Average % succ Average % succ � ��������� , 	 �
����� , ��
 Average % succ

DSJC125.5.col 17 244382 100 186185 100 (����� ��� , � ���� , ��� ���) - -
DSJC250.5.col 28 4179466 88 3550914 76 (��� � �!� , � �!� , �"� ���) 490000 90
flat 26 0.col 26 957811 100 649107 100 (#$��� ��� , � ���% , ��� ���) - -
flat 28 0.col 31 5375378 26 5354077 20 (����� ��� , � ���� , ��� &�� 637000 60
le450 15a.col 15 113165 100 95246 100 (����� ��� , � ���% , ��� ���) - -
le450 15b.col 15 66165 100 63920 100 (����� ��� , � ���� , ��� ���) - -
le450 15c.col 15 3881149 22 451714 100 (#'��� �!� , � � �!� , �"� ���) 194000 60
le450 15d.col 15 6399520 8 2128483 100 (#'��� �!� , � � ��� , �"� ���) - -
le450 25c.col 26 120720 100 108312 100 (����� ��� , � ���� , ��� ���) 800000 100
le450 25d.col 26 108685 100 99785 100 (����� ��� , � ���� , ��� ���) - -

For some of the hardest instances, as le450 15c.col and le450 25c.col, the ILS was
able to obtain colorings in less iterations than HEA. This is remarkable, since HEA was
reported the best results among the large number of approximation algorithms for the
GCP. However, on the instances DSJC250.5.col and flat 28 0.col, HEA shows better
average behavior.

Finally, it should be remarked that, when compared to the Tabu Search results of
[7] (not reported here), our Tabu Search was able to find complete coloring with an
inferior chromatic number on the instances flat 28 0.col and le450 15c.col, with 31
and 15 colors, respectively. However, on the instance DSJC250.5.col our Tabu Search
performed worse.

The peak performance results clearly indicate that the ILS algorithm is able to com-
pete with state-of-art algorithms. Yet, this approach does not use any operator that uses
the knowledge of the problem to guide the search, as the crossover operator in [7].

5.2 Perturbation parameters

We analyzed the dependence of the ILS performance from the parameters that deter-
mine the perturbation. Tables 2, 3, and 4 show the average results obtained from 25
runs on the instance le450 25c.col and the percentage of successful runs. Each table is
grouped by the � � � ����� values.

The computational results suggest that higher values for � � ������� could be a good
choice. Additionally, low values for the parameters � � and � ������� seem to help. Hence,
a good perturbation strength for this instance is rather different from random restart,
which confirms our conjecture that a perturbation, as the one reported here, brings more
advantages than a random restart. This observation holds for most instances. One ex-
ception is the instance le450 15c.col, for which the results obtained indicate that the
perturbations should be disruptive enough to move the search to different regions of the
search space.

128

Table 2. Average values for ILS with � ����������� #$��� ��� on le450 25c.col

	 �������
�
 � � �� � � �% � �!� � � � �
0.25 157298 (100%) 254323 (100%) 376345 (100%) 2498161 (100%)
0.50 153709 (100%) 192482 (100%) 278668 (100%) - (0%)
0.75 131303 (100%) 320049 (100%) - (0%) - (0%)

Table 3. Average values for ILS with � ����������� ����� ��� on le450 25c.col

	 �������
�
 � ���� � ���% � �!� �"� ���
0.25 117866 (100%) 163488 (100%) 179836 (100%) 709729 (100%)
0.50 108312 (100%) 144848 (100%) 196596 (100%) 872861 (100%)
0.75 127268 (100%) 155794 (100%) 1051493 (100%) 1973531 (100%)

Table 4. Average values for ILS with � � ������� � ����� ��� on le450 25c.col

	 �������
��
 � ���� � ���% � � � � � � �
0.25 116881 (100%) 167439 (100%) 163045 (100%) 300516 (100%)
0.50 165227 (100%) 128923 (100%) 153511 (100%) 597886 (100%)
0.75 130700 (100%) 184779 (100%) 411852 (100%) 737571 (100%)

5.3 Run-time Distributions

Our ILS algorithm makes strong use of randomized decisions during the search and
therefore the run-time required to find a coloring is a random variable; this is notable
by the fact that the time needed to find such a solution varies between runs of the
algorithm. We estimate the distribution the solution times by analyzing empirical run-
time distributions (RTDs). RTDs give the empirical probability of finding a solution
as a function of the run-time [22, 23]. RTDs can be used to ease the comparison of
local search algorithms, characterize the run-time behavior of local search algorithms
on specific problem classes and to give valuable hints in which situations local search
algorithms can be improved [22].

Here we analyze the run-time behavior of ILS and compare it with Tabu Search. We
ran 100 times the Tabu Search and the ILS using the best parameter settings found on
the instances le450 15b.col, le450 15c.col. Figures 2 and 3 plot the RTDs of ILS and
Tabu Search on these instances.

Observing the RTDs on instance le450 15b.col on the Figure 2 (left), it is possible to
conclude that both algorithms perform similarly, as also reported in Table 1. However,
the behavior of the two algorithms is different beyond 100000 iterations. The curvature
of Tabu Search’s RTD indicates worse performance than ILS on long search paths.
This different behavior could mean that ILS is capable of getting out of some local
optimum in a more successful way than Tabu Search and this may be the main reason
for improved performance. Figure 2 (right) also demonstrates the higher performance
of ILS on the instances le450 15c.col (the RTDs on le450 15d.col look similar). The

129

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10000 100000 1e+06

em
pi

ric
al

 s
uc

ce
ss

 p
ro

ba
bi

lit
y

No. of iterations

TS
ILS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10000 100000 1e+06 1e+07

em
pi

ric
al

 s
uc

ce
ss

 p
ro

ba
bi

lit
y

No. of iterations

TS
ILS

Fig. 2. Run-time distributions of Tabu Search and ILS on instance le450 15b.col (left) and
le450 15c.col (right).

RTDs obtained from these two instances prove their hardness, since Tabu Search was
not able to reach more than a success rate of 20%.

6 Conclusion

In this paper we have presented an initial study of the application of ILS to the graph col-
oring problem. When looking at peak performance, some very promising results were
obtained compared to state-of-the-art algorithms. There are a number of ways how this
research will be extended in the future. First, we will extend this approach to larger
instances, random and structured, to verify if the overall behaviour is similar to the one
reported here. Second, we will to do a more detailed analysis of the parameter space for
the perturbation. Such a study may identify even better parameter settings. Additionally,
a refined study using methods from experimental design may help to better understand
the interaction between the perturbation parameters. Third, additional ways of perturb-
ing solutions will be tested, because this seems to be the key to further enhance ILS
performance for the graph coloring problem. Future work will also include ways of
how to automatize the adjustment of the parameters for the instance under solution.

Acknowledgments This work was supported by the “Metaheuristics Network”, a Research
Training Network funded by the Improving Human Potential programme of the CEC, grant
HPRN-CT-1999-00106. The information provided is the sole responsibility of the authors and
does not reflect the Community’s opinion. The Community is not responsible for any use that
might be made of data appearing in this publication.

References

1. M.W. Carter. A survey of pratical applications of examination timetabling algorithms. Op-
erations Research, 34(2):193–202, 1986.

2. D.J. Castelino, S. Hurley, and N.M. Stephens. A tabu search algorithm for frequency assign-
ment. Annals of Operations Research, 63:301–320, 1996.

3. M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of���
-Completeness. Freeman, San Francisco, CA, USA, 1979.

130

4. A. Mehrotra and M. Trick. A column generation approach for graph coloring. INFORMS
Journal On Computing, 8(4):344–354, 1996.

5. D. Brélaz. New methods to color the vertices of a graph. Communications of the ACM,
22(4):251–256, 1979.

6. C. Fleurent and J. Ferland. Genetic and hybrid algorithms for graph coloring. Annals of
Operations Research, 63:437–464, 1996.

7. P. Galinier and J.K. Hao. Hybrid evolutionary algorithms for graph coloring. Journal of
Combinatorial Optimization, 3(4):379–397, 1999.

8. A. Hertz and D. de Werra. Using tabu search techniques for graph coloring. Computing,
39:345–351, 1987.

9. D.S. Johnson, C.R. Aragon, L.A. McGeoch, and C. Schevon. Optimization by simulated
annealing: An experimental evaluation: Part II, graph coloring and number partitioning. Op-
erations Research, 39(3):378–406, 1991.

10. F.T. Leighton. A graph coloring algorithm for large scheduling problems. Journal of Re-
search of the National Bureau of Standards, 85:489–506, 1979.

11. H.R. Lourenço, O. Martin, and T. Stützle. Iterated local search. In F. Glover and G. Kochen-
berger, editors, Handbook of Metaheuristics. Kluwer Academic Publishers, Boston, MA,
USA, 2002. to appear.

12. J.C. Culberson. Iterated greedy graph coloring and the difficulty landscape. Technical Report
92-07, Department of Computing Science, The University of Alberta, Edmonton, Alberta,
Canada, June 1992.

13. S. Minton, M.D. Johnston, A.B. Philips, and P. Laird. Minimizing conflicts: A heuristic
repair method for constraint satisfaction and scheduling problems. Artificial Intelligence,
52:161–205, 1992.

14. R. Dorne and J.K. Hao. Tabu search for graph coloring, t-colorings and set t-colorings.
In I.H. Osman S. Voss, S. Martello and C. Roucairol, editors, Meta-heuristics: Advances
and Trends in Local Search Paradigms for Optimization, pages 77–92. Kluwer Academic
Publishers, Boston, MA, USA, 1999.

15. M. Chams, A. Hertz, and D. De Werra. Some experiments with simulated annealing for
coloring graphs. European Journal of Operational Research, 32:260–266, 1987.

16. L. Davis. Order-based genetic algorithms and the graph coloring problem. In Handbook of
Genetic Algorithms, pages 72–90. Van Nostrand Reinhold; New York, 1991.

17. A.E. Eiben, J.K. Hauw, and J.I. Van Hemert. Graph coloring with adaptive evolutionary
algorithms. Journal of Heuristics, 4:25–46, 1998.

18. M. Laguna and R. Martı́. A GRASP for coloring sparse graphs. Computational Optimization
and Applications, 19(2):165–178, 2001.

19. C. Fleurent and J. Ferland. Object-oriented implementation of heuristic search methods
for graph coloring, maximum clique and satisfiability. In D.S. Johnson and M.A. Trick,
editors, Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge,
volume 26, pages 619–652. American Mathematical Society, 1996.

20. D.S. Johnson and L.A. McGeoch. The travelling salesman problem: A case study in local
optimization. In E.H.L. Aarts and J.K. Lenstra, editors, Local Search in Combinatorial
Optimization, pages 215–310. John Wiley & Sons, Chichester, UK, 1997.

21. O. Martin and S. W. Otto. Partitoning of unstructured meshes for load balancing. Concur-
rency: Practice and Experience, 7:303–314, 1995.

22. H.H. Hoos and T. Stützle. Evaluating Las Vegas algorithms — pitfalls and remedies. In
Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence (UAI-98),
pages 238–245. Morgan Kaufmann, San Francisco, 1998.

23. H.H. Hoos and T. Stützle. Characterising the behaviour of stochastic local search. Artificial
Intelligence, 112:213–232, 1999.

