Neighborhoods Revisited:
An Experimental Investigation into the Effectiveness of Variable
Neighborhood Descent for Scheduling*

Matthijs den Besten Thomas Stiitzle

Intellectics Group, Darmstadt University of Technology
Alexanderstrafie 10, D-64283 Darmstadt
Email: {matthijs,tom}@intellektik.informatik.tu-darmstadt.de

1 Introduction

Variable neighborhood search (VNS) systematically exploits the idea to alternate between neighbor-
hoods within a local search [4]. Several VNS variants of have been described so far and many of them
have been applied with success to a variety of combinatorial optimization problems; see [3, 4] for an
overview. Yet, even though scheduling is a central problem in production environments, we are not
aware of any VNS applications to scheduling problems. In this paper we focus on the application of a
particular VNS technique called variable neighborhood descent [3] to scheduling problems in which a
solution can be represented as one permutation of all jobs. This class of scheduling problems includes
single machine problems as well as a variety of multiple machine problems. In this abstract, we present
some results of VND when applied to single machine problems minimizing the total tardiness problem,
the total weighted tardiness, and the sum of weighted completion times, as well as to the permuta-
tion flow shop problem. In addition we investigate whether VND local search performs better than a
single neighborhood local search algorithm when the local search is used as a sub-procedure within a
metaheuristic like iterated local search [6].

2 Variable neighborhood descent for scheduling problems

An iterative improvement local search algorithm is characterized by its solution representation, the
type of applicable solution modifications defined by some neighborhood, and the strategy, also known
as pivoting rule, it employs to define which neighbored solution replaces the current one. In the
scheduling problems we consider, a solution can be represented as a permutation © = (71, ma,...,7y,)
of n jobs. The standard neighborhoods for permutation scheduling problems are transpose, interchange
and insert. Transpose is the smallest neighborhood. It consists of all permutations that can be obtained
by swapping adjacent jobs in the permutation and has size n — 1. The interchange neighborhood
consists of all permutations that can be obtained by swapping two elements at the ith and jth position
(i # j) regardless of their adjacency. The size of this neighborhood is n - (n — 1)/2. Finally, the insert
neighborhood contains all permutations that can be obtained by removing an element at the ¢th position
and inserting it in the jth position (i # j), resulting in a neighborhood size of (n — 1)2. Obviously, the
transpose neighborhood is a subset of the interchange and insert neighborhoods, while the interchange

*This work was partially supported by the “Metaheuristics Network”, a Research Training Network funded by the
Improving Human Potential programme of the CEC, grant HPRN-CT-1999-00106. The information provided is the sole
responsibility of the authors and does not reflect the Community’s opinion. The Community is not responsible for any
use that might be made of data appearing in this publication.

MIC’2001 - 4th Metaheuristics International Conference 2

procedure basic VND procedure IPS
Initialize: © = GeneratelnitialSolution, Select set Initialize: © = GeneratelnitialSolution
of neighborhood structures N3, k= 1,..., knax repeat
repeat z' = ModifySolution(z
k=1 zp =Au(2"); .. 2y, = Ag(al_y)
repeat if (accept(z},))
x' = BestNeighbor(N(z)) T =1z
if (z' better than x) until termination criterion is met
z=ua end
else
k=k+1

until & = k.«
until no improvement
end

Figure 1: Outline of variable neighborhood descent Figure 2: Outline of iterated piped search

and the insert neighborhood are complementary parts of a bigger 2-opt neighborhood that contains
both permutations that result from a normal exchange of elements and permutations obtained after an
exchange of an element with an empty element. Finally, to fully define an iterative improvement local
search algorithm, a pivoting rule has to be defined. Standard pivoting rules are best improvement that
applies the best possible move of the neighborhood and first improvement that immediately applies a
move as soon an improved solution is found. In the last case, also the order of the scan is important.
So, already for the implementation of standard local search, a lot of design issues have to be faced.
The VNS metaheuristic opens up the configuration even further: Not just one neighborhood should be
chosen, but a set of neighborhoods, and on top of the standard neighborhood scan, one has to define
in which order to scan the different neighborhoods.

The basic variable neighborhood descent algorithm [3] is an extension of standard local search
(see Figure 1 for an outline). Basic VND iteratively explores neighborhoods Ny, & = 1,..., knax
for the descent and applies a best improvement strategy to each of the neighborhoods. VND can be
successful because a local optimum within one neighborhood is not necessarily a local optimum for a
different neighborhood. So, changing the neighborhood can result in better local optima. However, the
performance of the algorithm depends crucially on the choice of the neighborhoods and the way they
are ordered. In applications to permutation scheduling problems, the transpose neighborhood can only
be used as the first neighborhood, because the set of moves it considers is a subset of the moves of the
other two neighborhoods. Still, the use of the transpose neighborhood may speed-up the local search in
total, because this neighborhood can be explored very quickly (results with the transpose neighborhood
will only be presented in the full paper). The best order of the interchange and the insert neighborhood
will be problem dependent, but intuitively one might think that in most situations it may be more
reasonable to first apply the smaller neighborhood, which in this case is the interchange neighborhood.

In our VND approach we assume that the local search algorithm for each neighborhood Nj; is
given as a black box procedure A; [5]. Our VND is therefore a concatenation of “black boxes”. Since
we pipe the output of procedure A; ; as the input into procedure A;, we denote this concatenation
as A;_1|A; (the | symbol is chosen analogous to the Unix shell conventions on piping). Obviously,
piping algorithms is only useful, if the procedures are truely different. In VND this is the case if the
procedures implement local search algorithms using different neighborhoods. Otherwise, if V;_; C N;
mainly a speed advantage may arise by exploring first smaller neighborhoods. Yet, the idea of piping
algorithms is much more general than VNS: The algorithms may differ in completely other aspects
than the neighborhood to be used in a local search. For example, phases of search space exploration
and exploitation can be alternated by piping algorithms implementing these two features. A different
idea may be to pipe procedures which use different representations of a problem to avoid the problem
of local optimality. In fact, this is the idea underlying the shifting approach [1]. Our implementation

Porto, Portugal, July 16-20, 2001

MIC’2001 - 4th Metaheuristics International Conference 3

of Variable Neighborhood Descent is an example of such an “iterated piped search” (see Figure 2).

3 Scheduling problems

In this abstract we present results on the effectiveness of VND for four A"P-hard scheduling problems.

Single machine total tardiness problem (SMTTP). In the SMTTP each of n jobs has to be
processed without any interruption on a single machine that can only process one job at a time.
Each job has a processing time p;, and a due date d; associated and the jobs become available
for processing at time zero. The tardiness of a job is defined as T; = max{0, C; — d;}, where C;
is the completion time of job j in the current sequence of jobs. The goal in the SMTTP then is
to find a sequence of the jobs which minimizes the sum of the tardiness given by Y 7 ; T;.

Single machine total weighted tardiness problem (SMTWTP). The SMTWTP, a variant of
the SMTTP, associates each job with an integer weight w; (reflecting the importance of the job)
and the goal becomes to minimize the sum of the weighted tardiness given by " | w; - T;.

Single machine total weighted completion time problem (SMWCP). In the SMWCP we have
given n jobs and each job ¢ has associated a positive weight w;, a processing time p;, and a non-
negative release date r;, before which it is unavailable for processing on the machine. The goal
in the SMWCP is to minimize 2?21 w;C;, where C; is the ith job’s completion time.

Flow shop problem (FSP). In the FSP, each of n jobs has to be processed on m machines 1,...,m
in this order. The processing time of job ¢ on machine j is ¢;; where the ¢;; are fixed and
nonnegative. At any time, each job can be processed on at most one machine, and each machine
can process at most one job. The jobs are available for processing at time 0 and the processing
of a job may not be interrupted. Here, we focus on the permutation flow shop problem (PFSP),
where the job order is the same on every machine. The objective is to find a job sequence 7 that
minimizes the completion time (called makespan) of the last job.

For the extended version of the article we also will add results for the application of VND to FSPs
with job weights and the weighted completion time objective, SMWCP with common job weights, as
well as other variants of single machine problems. The choice of the problems and their objective
functions is motivated by the desirability to have (i) problems in a weighted and unweighted form,
(ii) problems where each job has a direct influence or only a rather indirect influence on the objective
function (e.g. in the PFSP only the completion time of the last job is measured, while if the objective is
the sum of weighted completion times each job’s completion time directly goes into the goal), and (iii)
the number of machines. We expect these criteria to influence the performance improvement obtained
by using VND over the use of a single neighborhood in the local search.

4 Experimental Results

We have run iterative improvement algorithms using the interchange and the insert neighborhood as
well as the two VND variants on a large set of benchmark instances. The benchmark instances for the
SMTTP, the SMTWTP, and the PFSP are taken from ORLIB (available at http://mscmga.ms.ic.-
ac.uk/); the SMWCP instances are a subset of the instances available at http://ebbets.poly.edu/-
SCHED/onerj.html. The computational results for the different local search procedures are given in
Tables 1 to 4.

We can summarize the computation results regarding the solution quality as follows: For the
SMWCP and the PFSP the insert neighborhood is strongly preferable over the interchange neigh-
borhood, while for the SMTTP and the SMTWTP the performance of the two basic local search

Porto, Portugal, July 16-20, 2001

MIC’2001 - 4th Metaheuristics International Conference 4

Table 1: Comparison of the local search effectiveness for the SMTTP. Results on the 100 job instances
using the interchange, the insert, and the VND variants. We give the average percentage deviation from
the best known solutions (Ag,yy), the number of best-known solutions found (n,p:), and the average
CPU time in seconds (tq.4) averaged over 125 benchmark instances. The computational results are
given for two different construction heuristics (EDD, MDD) for the initial solution.
interchange insert insert | interchange interchange|insert
it Aa'ug Nopt ta'ug Aa'ug Nopt ta'ug Aa,vg Nopt ta,vg Aa'ug Nopt ta'ug
EDD 0.53 33 0.19 0.73 41 0.17 0.12 73 0.20 0.07 76 0.20
MDD 0.46 64 0.02 0.12 83 0.02 0.10 93 0.03 0.11 87 0.03

Table 2: Comparison of the local search effectiveness for the SMTWTP. Results on the 100 job instances
from ORLIB with the interchange, the insert, and the VND local searches. See Table 1 for a definition

for the table entries. _] _ _
interchange insert insert | interchange interchange|insert

it A avg TNopt tavg Aa'ug Nopt ta'ug Aa'ug Nopt ta'ug Atwg Nopt ttwg
EDD 1.19 38 0.29 2.09 26 0.23 0.46 49 0.30 0.52 42 0.28

MDD 1.31 36 0.32 1.03 33 0.16 042 42 0.33 037 44 0.20
AU 0.56 39 0.11 081 33 0.05 034 48 0.12 0.63 50 0.08

algorithms is rather similar and, in addition, the relative performance depends on the initial solution.
If we combine the two local search algorithms in a VND local search, resulting in two VND local search
variants depending on the order of the interchange and insert local searches, we observe especially on
the single machine problems a significant improvement in the solution quality. This improvement can
be observed in the much lower percentage deviation from best known solutions over the first local search
algorithm applied in the VND. Only for the PFSP the performance improvement through the VND
was not very impressive. This is rather due to the fact that only the completion time of one job is
reflected in the objective function rather than the PFSP being the only problem with more than one
machine. With respect to the order of the interchange and the insert local search in the VND, in most
case it seems to be preferable to apply the insert local search, contradicting somewhat the intuition of
first applying smaller neighborhoods.

Regarding computation times, it is noteworthy that in all cases the VND local search takes less time
than the sum of the computations times necessary for each of the two component local searches when
starting from the initial solution. This effect is caused by the good starting solution for the second
local search and the fewer number of improvement steps necessary to reach a local optimum. This
run-time effect together with the possible improvement in solution quality shows that when applied to
scheduling problems, VND can significantly enhance local search performance and that VND may be
an easily implementable alternative to more complex local search algorithms like variable descent or
dynasearch for such problems.

While for some scheduling problems the VND achieves significantly improved solution quality when
compared to its component local search algorithms, it is not immediately clear whether these improve-
ments apply also if VND is used inside more complex metaheuristics that frequently apply a local search
algorithm as a subroutine. To investigate this issue we applied the VND algorithm presented here in
iterated local search algorithms [6] for the different scheduling problems attacked in this abstract [7, 2].
The results, which we omit here due to space limitations, show that for the single machine problems
the ILS algorithms, in fact, achieve best performance when applying the VND local search. Yet, for
the PFSP the improvement through the VND is even detrimental: For this problem, we obtained best
performance using the CPU-frugal insert local search.

In the full paper we will give a detailed account of our analysis and we extend the results shown
here to the application of the VND variants to a number of other scheduling problems. We will also
identify the problem features of permutation scheduling problems which make an VND local search

Porto, Portugal, July 16-20, 2001

MIC’2001 - 4th Metaheuristics International Conference 5

Table 3: Comparison of the local search effectiveness for the SMWCP. All local search algorithms start
from the same random initial solutions. We give the average percentage deviation from the best known
solutions (A 4yy) and the average CPU time in seconds (t,.4) averaged over the 10 benchmark instances
for each instance class with 10 instances each.

interchange insert insert|interchange interchange|insert

instance Aa'ug ta'ug Aavg ta'u_q Aa,vg tavg Aa,vg tavg
N100A2_P3W1 30.14 0.53 148 1.50 0.86 1.58 6.20 1.51
N100A5_P3W1 46.08 0.28 844 1.24 6.75 1.33 4.59 1.14
N100A10-P3W1 | 29.44 0.19 4.58 1.09 2.95 1.17 | 10.04 0.86
N100A20_P3W1 3.94 0.22 1.83 0.97 1.14 1.04 1.34 0.45
U100A0-P2W1 17.21 1.20 0.78 1.48 0.23 1.58 0.55 2.01
U100A0_P2W2 | 17.04 1.26 0.84 1.51 0.24 1.61 0.63 2.13
U100A0_P2W3 | 24.67 0.62 0.76 1.33 0.30 1.42 0.57 1.56

Table 4: Comparison of the local search effectiveness for the PFSP. All local search algorithms start
from random initial solutions. Each instance class (indicated by number jobs / number machines)
contains 10 instances and we give the average percentage deviation from the best known solutions
(Agug), and the CPU time in seconds (¢4y4)-

insert interchange insert|interchange interchange|insert

size Atwg t(wg Aa'ug ta'ug Aavg ta'ug Aavg ttwg

20 / 20 3.12 0.01 6.09 0.02 2.99 0.01 3.06 0.03
50 / 10 492 0.03 6.72 0.23 4.81 0.07 4.91 0.24
50 / 20 5.62 0.08 7.84 0.44 5.47 0.18 5.40 0.49
100 / 20 5.19 0.37 6.61 4.88 5.08 1.18 4.95 4.98

algorithm particularly promising.

References

[1]

[2]

3]

[4]

[5]

[6]

[7]

L. Barbalescu, J.-P. Watson, and L. D. Whitley. Dynamic representations and escaping local optima:
Improving genetic algorithms and local search. In Proceedings of AAAI’2000, 2000.

M. den Besten, T. Stiitzle, and M. Dorigo. Design of iterated local search algorithms: An example
application to the single machine total weighted tardiness problem. In Proceedings of Evo Workshops,
LNCS. Springer, Berlin, 2001.

P. Hansen and N. Mladenovié. Variable neighborhood search: Principles and applications. Les
Cahiers du GERAD (G-98-20, GERAD and FEcole des Hautes Etudes Commerciales, Montréal,
Canada, 1998.

P. Hansen and N. Mladenovié. An introduction to variable neighborhood search. In S. Voss,
S. Martello, I. H. Osman, and C. Roucairol, editors, Meta-heuristics: Advances and trends in local
searchs paradigms for optimization, pages 433—458. Dordrecht, NL, 1999.

P. Hansen and N. Mladenovi¢. Variable neighborhood search: Methods and recent applications. In
Proceedings of MIC’99, pages 275-280, 1999.

H. R. Lourenco, O. Martin, and T. Stiitzle. Iterated local search. In F. Glover and G. Kochen-
berger, editors, Handbook of Metaheuristics. To appear. A preliminary version is available at
http://www.intellektik.informatik.tu-darmstadt.de/tom/pub.html.

T. Stiitzle. Applying iterated local search to the permutation flow shop problem. Technical Report
ATDA-98-04, FG Intellektik, TU Darmstadt, August 1998.

Porto, Portugal, July 16-20, 2001

