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A Short Convergence Proof for a Class of
Ant Colony Optimization Algorithms

Thomas Stiitzle, Marco Dorigo

Abstract—In this paper we prove some convergence
properties for a class of ant colony optimization al-
gorithms. In particular, we prove that for any small
constant ¢ > 0 and for a sufficiently large number of
algorithm iterations ¢, the probability of finding at
least once an optimal solution is P*(t) > 1 — ¢ and
that this probability tends to 1 for ¢t — co. We also
prove that, after an optimal solution has been found,
it takes a finite number of iterations for the phero-
mone trails associated to the found optimal solution
to grow higher than any other pheromone trail, and
that for t - o any fixed ant will produce the opti-
mal solution during the ¢-th iteration with probabil-
ity P > 1 — &(Tmin, Tmaz ), where 7,5, and 7mae are the
minimum and maximum values that can be taken by
pheromone trails.

Keywords: Ant colony optimization, ACO al-
gorithms, convergence proof, ant algorithms, meta-
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I. INTRODUCTION

Ant colony optimization (ACO) is a metaheuris-
tic for the approximate solution of combinatorial op-
timization problems that has been inspired by the
foraging behavior of ant colonies. In ACO algo-
rithms the computational resources are allocated to
a set of relatively simple agents (artificial ants) that
exploit stigmergic communication, that is, a form of
indirect communication mediated by the environ-
ment [11], [4] to construct solutions to the consid-
ered problem. The construction of good solutions is
a result of the agents’ cooperative interaction.

In the last ten years a number of applications
to many different N"P-hard combinatorial optimiza-
tion problems [5], [6] has empirically shown the ef-
fectiveness of ant colony optimization. Still, very
little theory is available to explain the reasons of
ACO’s success: Birattari et al. [1] have proposed an
interpretation of ACO in the framework of optimal
control and reinforcement learning, while Meuleau
and Dorigo [16] have shown that ACO algorithms
and stochastic gradient descent are strongly related
and that a particular form of ACO algorithms con-
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verges with probability 1 to a local optimum. Closer
to the work presented in this paper is Gutjahr’s con-
vergence proof [14]: He proved convergence to the
globally optimal solution with probability 1 — € of a
particular ant colony optimization algorithm called
graph-based ant system (GBAS). Yet, GBAS is quite
different from any implemented ACO algorithm and
its empirical performance is unknown.

Differently, in this paper we present a simple con-
vergence proof that directly applies to at least two
of the most (experimentally) successful ACO algo-
rithms: Ant Colony System (ACS) [7] and MAX-
MIN Ant System (MMAS) [19].

The paper is organized as follows. In the next sec-
tion, we give a formal characterization of the class of
problems and of the algorithm for which the conver-
gence proof, presented in the following Section III,
holds. In Section IV we discuss the meaning and
implications of the proof, with particular attention
to its relations with Gutjahr’s convergence proof.
In Section V we show that the proof holds for a
wider class of ACO algorithms and, in particular,
for MMAS and ACS. Additionally, we show that
the proposed proof continues to hold if our algo-
rithm is made more general by adding problem de-
pendent heuristic information and local search, as
often done in ACO algorithms. Section VI con-
cludes the paper by briefly summarizing the ob-
tained results.

II. THE PROBLEM AND THE ALGORITHM

Let us consider a minimization problem!
(S, f,), where S is the set of (candidate) solu-
tions, f is the objective function, which assigns to
each candidate solution s € & an objective func-
tion (cost) value f(s), and Q is a set of constraints,
which defines the set of feasible candidate solutions.
The goal of the minimization problem is to find an
optimal solution s*, that is, a feasible candidate so-
lution of minimum cost.

The combinatorial optimization problem (S, f, Q)
is mapped on a problem that can be characterized

1 The obvious changes must be done if a maximization prob-
lem is considered.
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by the following list of items:?

o A finite set C = {¢1,¢2,-..,¢cN, } of components.

e A finite set X of states of the problem, de-
fined in terms of all possible sequences z =
(¢is¢jy-.-,Ck,-..) over the elements of C. The
length of a sequence z, that is, the number of com-
ponents in the sequence, is expressed by |z|. The
maximum length of a sequence is bounded by a pos-
itive constant n < 400.

o The set of (candidate) solutions S is a subset of
X (ie, SCAX).

o A set of feasible states X, with X C X, defined
via a problem dependent test that verifies that it is
not impossible to complete a sequence z € X into a
solution satisfying the constraints (.3

e A non-empty set S* of optimal solutions, with
S* C X and S* CS.

Given the above formulation, artificial ants
build candidate solutions by performing randomized
walks on the completely connected, weighted graph
G = (C,L,T), where the vertices are the compo-
nents C, the set £ fully connects the components
C, and T is a vector gathering so-called pheromone
trails 7.* The graph G is called construction graph.

Each artificial ant is put on a randomly chosen
vertex of the graph and then it performs a random-
ized walk by moving at each step from vertex to ver-
tex in the graph in such a way that the next vertex
is chosen stochastically according to the strength of
the pheromone currently on the arcs. While mov-
ing from one vertex to another of the graph G, con-
straints € are used to prevent ants from building
infeasible solutions. Once the ants have completed
their walk, pheromone trails are updated. Formally,
the solution construction behavior of a generic ant
can be described as follows:

ANT_SOLUTION_CONSTRUCTION

o While (z;, € X and 2, ¢ S) do:
at each step k, after building the sequence z =
(c1,¢2,...,cr), select the next vertex (component)

2How this mapping can be done in practice has been de-
scribed in a number of earlier papers on the ACO metaheuris-
tic [5], [6]-

3By this definition the feasibility of a state z € X should
be interpreted in a weak sense. In fact, it does not guarantee
that a completion s of x exists such that s € X.

4Pheromone trails can be associated to components, con-
nections, or both. In the following we will restrict our atten-
tion to the case in which pheromone trails are associated to
connections, so that 7(i,7) is the pheromone associated to
the connection between components ¢ and j. It is straight-
forward to extend algorithms and proofs to the other cases.

ck+1 randomly following

P(ekr1 =c | T,zx) (1)

T(Ck, c)a/ Z T(Cka y)a
y€eC
— (Ckay)e']ck

if (cg,c) € Je,

0 otherwise

where 0 < a < +o00 is a parameter, and a connec-
tion (ck,y) belongs to J., iff the sequence zpy1 =
(¢1,¢2, ..., Cr,y) is such that z;, € X. If at some
point in the solution construction the set J,, is empty,
the ant is dropped and its solution construction is ter-
minated.

Once all the ants have terminated their
ANT_SOLUTION_CONSTRUCTION procedure, a phero-
mone update phase is started in which pheromone
trails are modified. Let § be the best feasible solu-
tion found so far and s; be the best feasible solu-
tion in the current algorithm iteration ¢; f(3) and
f(s¢) are the corresponding objective function val-
ues. The pheromone update procedure decreases
by a small factor p, called the evaporation rate,
the value of the pheromone trails on all the con-
nections in £ and then increases the value of the
pheromone trails on the connections belonging to §
(adding pheromone only to those edges that belong
to the best-so-far solution is known in the literature
as the global best offline pheromone update [7], [5],
global best for short in the following).

The pheromone update procedure can be briefly
described as follows:

PHEROMONE_UPDATE

o If f(s¢) < f(3) then § « s¢

o V(i,j) € 8: 7(i,)) ¢ 7(i,7) + 9(8)

° V(Z,J) : T(i,j) « maw{Tmin;T(iaj)}

where p, 0 < p < 1, is the evaporation rate, 7, >
0 is a parameter, and g(s), 0 < g(s) < +o0, is a
function with g : S = R, f(s) < f(s') = g(s) >
o(s).

The algorithm is initialized as follows:

INITIALIZE
« generate a feasible solution s’ and set § = s’
o V(i,]) set 7(i, ) = 10
o for each ant:
— select a start vertex c¢; according to some problem
dependent criterion
—setk=1and z; = {c1)
where 79, Timin < To < +00, is a parameter.
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After the initialization, the algorithm iterates
through the procedures ANT_SOLUTION_CONSTRUC-
TION and PHEROMONE_UPDATE, until some termi-
nation condition is met. In the following we will
call this ACO algorithm ACOyg r,.;., Where gb in-
dicates that the global best pheromone update rule
is used, while 7., indicates that a lower limit on
the range of feasible pheromone trails is enforced.
For the following we assume that 7, < g(s*),
which can be achieved by setting, for example,
70 = g(s')/2, where s’ is the solution used to ini-
tialize ACOgp,r,.;.. -

III. CONVERGENCE PROOF

For the algorithm proposed in the previous sec-
tion we prove two theorems. First, we show that
ACOyy,r,.;. is guaranteed to find an optimal solu-
tion with a probability which can be made arbitrar-
ily close to one if given enough time. Second, we
prove that, after a fixed number of iterations tg has
elapsed since the optimal solution was first found,
the pheromone trails on the connections of the op-
timal solution are larger than those on any other
connection. This result is then extended to show
that an optimal solution can be constructed with a
probability larger than 1—&(Tynin, Tmaz), Where Timay
is the maximum value the pheromones may take.

Before proving the first theorem, it is convenient
to show that, due to pheromone evaporation, the
maximum possible pheromone level 7,,,, is asymp-
totically bounded.

Proposition 1: For any 7;; it holds:®

1

Jm 7)< T = 296 (@)
Proof: The maximum possible amount of
pheromone added to any edge (i, j) after any itera-
tion is g(s*). Clearly, at iteration 1 the maximum
possible pheromone trail is (1—p)-70+g(s*), at iter-
ation 2 it is (1 —p)2 -1 + (1 — p) - g(s*) + g(s*), etc.
Hence, due to pheromone evaporation, the phero-

mone trail at iteration ¢ is bounded by

TR = (1= p) o+ (1= p) T g(s)

Asymptotically, as 0 < p < 1, this sum converges
to

Tmaz

= ; -g(s")

5In the proofs we write 7;; instead of using 7(4, j) to ease
notation.

Proposition 2: Once an optimal solution s* has
been found, it holds that

v(i,j) € s*: tllglo Tz’?‘(t) = Tmaz = ; -g(s")
where 775 is the pheromone trail value on connec-
tions (4,7) € s*.

Proof:  Once an optimal solution has been
found, 77 (t) > Tmin and, because of the use of the
global best pheromone update rule, 7;;(t) is mono-
tonically increasing. The proof of Proposition 2 is
basically a repetition of the proof of Proposition 1,
restricted to the connections of the optimal solution
(7o is replaced by 775(¢*) in the proof of Proposi-
tion 1, where t* is the iteration when the first opti-
mal solution has been found). |

Proposition 1 says that for the following proof of
Theorem 1 the only essential point is that 7, > 0,
because Tp,q; Will anyway be bounded by phero-
mone evaporation. Proposition 2 additionally states
that the pheromone trails on all connections of s*,
once an optimal solution has been found, converge
10 Trnaz = 9(8*)/p.

We can now prove the following theorem.

Theorem 1: Let P*(t) be the probability that the
algorithm finds an optimal solution at least once
within the first ¢ iterations. Then, for an arbitrary
choice of a small € > 0 and for a sufficiently large ¢
it holds that

P (t)>1—c¢

and asymptotically
lim P*(t) =1
t—o0

Proof: Due to the pheromone trail limits 7,
and T,,4; We can guarantee that any feasible choice
in Equation 1 is done with a probability p,,., > 0.
A trivial lower bound for p,,, can be given as®

Ta

min
3
(NC - 1) *Thae T T'gfbin ( )

Pmin = ﬁmin =

where N¢ is the cardinality of the set C of compo-
nents.” Then, any generic solution s', including any
optimal solution s* € S§*, can be generated with

SFor the derivation of this bound we consider the follow-
ing “worst case” situation: The pheromone trail associated
with the desired decision is 7,,;y,, while all the other feasi-
ble choices (there are at most N¢ — 1) have an associated
pheromone trail of Tmaz-

71t is easy to find tighter bounds for p,,;,. One such bound
can be derived if we consider the fact that, due to pheromone
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a probability p > pr., > 0, where n < 400 is
the maximum length of a sequence. Because it is
enough that one ant finds an optimal solution, a
lower bound for P*(t) is given by

Pr(t)=1-(1-p)

By choosing t sufficiently large, this probability can
be made larger than any value 1 — €, because we
have that lim;_, o, P*(t) = 1. [ |

Theorem 2: Let t* be the iteration when the first
optimal solution has been found. Then a value tg
exists such that the following holds:

75 (t) > T (t)

V(i,j) € s*, V(k,1) € L N (k1) ¢ s*, and V¢t >
t"+to=t"+[(1-p)/pl

Proof: After a transition period ¢y has elapsed
from the iteration in which the first optimal solu-
tion was found (i.e., for ¢t > t* +to), the pheromone
trail on the connections used in the optimal solution
is larger than that on any other feasible connection.
In fact, due to the use of the global best pheromone
update rule, only connections belonging to s* in-
crease their pheromone trails, while the pheromone
trails of all other connections decrease by a factor p
after each iteration until reaching the lower bound
Tmin-

We now give a bound on the length of the tran-
sition period to. To do so, we assume the following
worst case situation. Let (4,7) be a connection be-
longing to s* with an associated pheromone trail at
iteration t* of 7/5(t*) = Tyin. Also, let (k,I) be a
connection not belonging to s* with an associated
pheromone trail at iteration t* of 74 (t*) = Tz At

iteration t* + ', 7/;(t) becomes

it + 1) @)
t'—1
= (1- p)tl * Tmin + Z(l - p)i -9(s")
=0

>t (1= p)¥ D . g(s*)

while the value of 7y (t) at iteration t* + ¢ is

* ! t'
Tkl(t +t ) = max{Tmina (]- - P) . Tma:c}
evaporation, no situation can arise in which No — 1 connec-
tions have a pheromone trail of Timqgz. In fact, if a connection
with pheromone trail value 7y, 4z does not receive additional
pheromone in the pheromone updates during i iterations, its
pheromone level decreases to (1 — p)* - Tmaz. Taking into
account this effect, we can derive a tighter bound on p,,;,
a1 e’ o Ng—2 o o

as pl . =712, /(7— R 24:0 (1 —p) . Tmaz)' In fact,
this bound holds for any iteration ¢ > Nc.

For our purposes, the interesting case is when this
maximum corresponds to (1 — p) - Tye2. Then we
have that 77;(t* +t') > 711 (t* + ') when

t(1- P)(t,_l) g(s™) > (1- P)tl " Trmaz

which is the case when

0> | e EEB - el =1

g(s*
n

From Theorem 2 it is immediate to see that, for
any iteration ¢t > t* +1ty, any ant will be able to con-
struct s* by making, at each construction step, de-
terministically the choice associated with the largest
pheromone trail.

In the limiting case, once the optimal solution
has been found, we can give a lower bound estimate
for an ant’s probability of constructing an optimal
solution when following the stochastic policy of the
algorithm. Before proving this, we show in Proposi-
tion 3 that the pheromone trail of connections that
are not in the optimal solution converge in the limit
to the value 7.

Proposition 3: Once an optimal solution has been
found and for any 7;;(t) such that (4, j) ¢ s* it holds
that

tliglo 735 (t) = Trmin

Proof: Because after the optimal solution has
been found connections not belonging to the opti-
mal solution do not receive any pheromone, their
value can only decrease. In particular, after one
iteration 7;;(t* + 1) = maz{Tmin, (1 — p) - Tmaz}
and after ¢' iterations 7;; (¢* +t') = max{Tmin, (1 —
p)t' * Tmaz}- It is then clear that for ¢t — oo,
Tij (t) — Tmin- |
In fact, Proposition 3 can be made stronger by

showing that the value 7., is reached in a finite
number of iterations.

Proposition 4: Starting from iteration t' > t* +1,
it holds that

V(i;j) ¢ S*aTij(t) = Tmin

where t* is the iteration when the first optimal so-
lution s* has been found, and t¢ = [(In T —

In Timaz)/ In(1 = p)].

Proof: We can give a bound on tg by assuming
that at iteration t* for at least one (4, j) ¢ s* it holds
that 7;;(t*) = Tmas- Following the same reasoning
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as in Proposition 3, we note that after ¢ iterations
755 (t* +t') = maz{Tmin, (1 — p)* - Trmaz}. Then g is
the first iteration such that (1 — p)¥ - Tpes < Tomin-

It is easy to show that this is the case for tq =
[(In Trin — In Tez) / In(1 — p)]. [ |

Corollary 1: Let t* be the iteration when the first
optimal solution has been found and P(s*,t,k) be
the probability that an arbitrary ant k constructs
s* in the t-th iteration, with ¢ > ¢*. Then it holds
that

lim P(S*, t, k) >1- é(Tmin;Tmax)
t—o0

Proof: Let ant k be located on component 4
and (7, 7) be a connection of s*. Remembering that
ants choose the next component j in the set J;, a
lower bound p;;(t) for the probability pj; (¢) that ant
k makes the “correct choice” (i,7) is given by the
term

. (r5(0)°
00 = ) + g (T ()"

Because of Propositions 2 and 3, we have

by = lim 5 () )
limy o0 (755 (1))
limt_mo [(T,:] (t))a + E(i,k) ¢s* (Tik (t)) a]
T’?I‘la$

Tgmz + (NC - 1) ’ T7Ortzin

Hence, in the limit a lower bound for P(s*,t,k) is
Dy = (P5;)™. Setting € = 1 — p; proves the corollary.
|

IV. DISCUSSION

In the previous section we proved two theorems
about the convergence of ACOygyy r,.... In this sec-
tion we briefly discuss the meaning of these two the-
orems and we show how they relate to Gutjahr’s
previous convergence proof [14].

A. What does the proof really say?

It is instructive to understand what the proofs
presented in Section III really tell us: Theorem 1
says that our algorithm does not rule out the pos-
sibility of finding the optimal solution, while Theo-
rem 2 says that, once the optimal solution has been
found, the pheromone trails on connections belong-
ing to the optimal solution will become larger than
those on any other connection. Based on this latter
result, Corollary 1 gives a bound on the probability

of constructing an optimal solution. On the other
hand, the proofs do not say anything about the
time required to find an optimal solution, which can
be astronomically large. (A similar limitation ap-
plies to other well-known convergence proofs, such
as those for simulated annealing [15], [17].)

It is interesting to stress the role of the
strict inequality in the pheromone update rule of
ACOygp,7,.;, (see item 2 in the pheromone update
rule of Section II). Suppose we replace the strict
inequality with a better than or equal to inequal-
ity (i.e., we replace the symbol < with the symbol
< in the pheromone update rule): For a problem
with several distinct global optima, this could lead
to a situation in which we switch back and forth
between distinct global optima. Although this does
not affect Theorem 1, Theorem 2 would not hold
anymore, that is, we could not prove that all the
pheromones settle on a single globally optimal so-
lution. Interestingly, all those implementations of
ACO algorithms that use the global best update
rule also use a strict inequality, that is, they update
the global best solution only when an improved so-
lution is found.

An important role in the proof of Theorem 1
is played by Tpin and Tyes: the smaller the ratio
Tmaz/ Tmin, the larger the lower bound P, given in
that proof.® This is important, because the larger
Pmin, the smaller is the worst-case estimate of the
number of iterations ¢ needed to assure that an opti-
mal solution is found with a probability larger than
1 — €. In fact, the tightest bound is obtained if all
pheromone trails are the same, that is, for the case
of uniformly random solution construction; in this
case’ we would have p,., = 1/N¢. This in a way
counterintuitive result is due to the fact that our
proof is based on a worst-case analysis: we need
to consider the worst-case situation in which the
bias in the solution construction introduced by the
pheromone trails is counterproductive and leads to
sub-optimal solutions;'? that is, we have to assume
that the pheromone trail level associated with the
connection an ant needs to pass for constructing an
optimal solution is 7Tin, while on the other con-

80n the contrary, in Corollary 1 the larger the ratio
Tmaz/ Tmin, the larger the asymptotic probability P(s*,t,k)
that an ant k£ builds the optimal solution once it has been
found.

9This fact is independent of the tightness of the lower
bounds used in Theorem 1.

10Tn practice, however, as shown by the results of many
published experimental works (see [5], [6], [10] for an
overview) this does not happen, and the bias introduced by
the pheromone trails does indeed help to speed up conver-
gence to an optimal solution.
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nections it is much higher—in the worst case corre-
sponding t0 Tyqez As we said, however, the main
contribution of the theorem, in practical terms, is
to assure that if the algorithm runs long enough it
will find an optimal solution with a high probabil-
ity. This result is important because, as we will
see in the next section, the convergence proof for
ACOygs,r,,;. can be extended to cover two of the ex-
perimentally best performing ACO algorithms.

B. Relationship to Gutjahr’s convergence proof

Recently, Gutjahr [14] proposed a convergence
proof for GBAS, an algorithm belonging to the
ACO class. GBAS is very similar to ACOygg, ..., ex-
cept that 7, = 0 and the pheromone update rule
changes the pheromones only when, in the current
iteration, a solution at least as good as the best one
found so far is generated. He proved the following
theorem:'!

(i) for each € > 0, for a fixed p, and for a sufficiently
large number of ants, the probability P that a fixed
ant constructs the optimal solution at iteration ¢ is
P >1—efor all t > tg, with tg = to(€);

(#) for each € > 0, for a fixed number of ants, and
for an evaporation rate p sufficiently close to zero,
the probability P that a fixed ant constructs the
optimal solution at iteration ¢ is P > 1 — € for all
t 2 to, with to = to(f).

There are a number of differences between Gut-
jahr’s proof and ours, the most important concern-
ing the type of convergence proved. In fact, in The-
orem 1 we prove convergence in value (that is, we
prove that the algorithm will eventually find the op-
timal solution), while Gutjahr proves convergence in
solution (that is, he proves that the algorithm will
converge to a situation in which it generates the
optimal solution over and over). Gutjahr’s proof is
stronger than ours (it implies our result, but the
vice versa is not true), but our proof holds for any
ACO algorithm as far as a lower bound 7,4, > 0
and an upper bound Ty, < +00 to the phero-
mone trails exist. Therefore, while Gutjahr’s proof
holds only for graph-based ant system, an ACO al-
gorithm that has never been implemented and for
which no experimental results are available, ours
holds, as shown in the next section, for some of the
best performing ACO algorithms published in the
literature.

HWhile finalising this paper, Gutjahr [12] extended the
convergence results of his earlier article [14] for two variants
of GBAS, obtaining the very same convergence properties of
Simulated Annealing [15], that is, convergence of the current
solution to an optimal solution with probability one.

From a more technical point of view, the two
proofs differ in a number of points that we sum-
marize in the following.

e Our Theorem 1 holds independent of the way
pheromones are updated (to be exact, it holds, pro-
vided that 7,,;, > 0, for any pheromone update rule
with 0 < p < 1 and that does add a finite amount of
pheromone trail), while Gutjahr’s proof holds only
for GBAS’s particular pheromone update rule (in
an extension of his theorem [13] he proves conver-
gence under the condition that GBAS’s pheromone
update rule is applied at least in the final phases of
the algorithm).

¢ Our Theorems 1 and 2, as well as Corollary 1, hold
for Tpmin > 0, while in Gutjahr’s proof pheromone
trails can go to zero.

o Gutjahr proves that the probability of generating
the optimal solution in each iteration goes to 1 as
the number of iterations goes to infinity, while we
can only prove, because of 7,,;,, that it goes to 1 —¢€
(see Corollary 1).12

e Our result is independent of the number of op-
timal solutions in &*, while one of the conditions
for Gutjahr’s theorem is that there is a single opti-
mal solution (this limitation has been removed by
Gutjahr in [13]).

e In our Theorem 1 convergence is a function of
Tmin and p, while in Gutjahr’s it is a function of
the number of ants and of p.

V. ACO ALGORITHMS AND CONVERGENCE

As we already mentioned, from the point of view
of the researcher interested in applications of the
algorithm, the interesting part of our convergence
proof is the one corresponding to Theorem 1, which
states that ACQOgyp, .., finds an optimal solution
with arbitrarily large probability if run long enough.

It is therefore interesting that this theorem
also applies to ACO algorithms that differ from
ACOyg4,r,,;. in the way the pheromone update pro-
cedure is implemented. In general, Theorem 1 ap-
plies to any ACO algorithm for which the proba-
bility P(s) of constructing a solution s € S always
remains greater than a small constant € > 0. In
ACOygs,r,,;. this is a direct consequence of the fact
that 0 < Timin < Tmaez < 400, which was obtained
by (i) explicitly setting a minimum value 7, for

127t should be said that, for practical purposes, this part of
the proof is not very important because in optimization we
are interested in finding the optimal solution and not in con-
tinuing to generate it once found. In fact, in any implementa-
tion of an iterative procedure for combinatorial optimization
the best solution found so far can be kept in memory and
used as output of the procedure.
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pheromone trails, (ii) limiting the amount of phero-
mone that the ants may deposit after each iteration,
that is, Vs, g(s) < +00, and by (iii) letting phero-
mone evaporate over time, that is, by setting p > 0.
We will call the class of ACO algorithms that sat-
isfy these three conditions ACO;,,... ACOgpr,...
differs from ACO, ,, in that it additionally imposes
the use of the global best pheromone update rule.
Therefore, ACOygyp,+,.;, can be seen as a particular
case of ACO;, ... By definition, Theorem 1 holds for
any algorithm in ACO,, .. On the contrary, this is
not in general true for Theorem 2 and Corollary 1.

A. Algorithms in ACO;,,

In the following we show that MAX-MZN Ant
System (MMAS) and Ant Colony System (ACS),
two of the experimentally most successful ACO al-
gorithms, fall into the ACO, , class.

Tmin

A1 MAX-MIN Ant System

MMAS is one of the best performing ACO algo-
rithms and it was applied successfully to problems
such as the well-known traveling salesman prob-
lem (TSP) and the quadratic assignment problem
(QAP) [18], [19]. It is easy to show that MMAS
belongs to ACO,, . In fact, there are only two mi-
nor differences between MMAS and ACOgp 1., -
First, MMAS uses an explicit value for 7,4, in-
stead of an implicit one as done in ACOgpr,...-*
The main reason for this choice is that MMAS
occasionally reinitializes the pheromone trails to
Tmaz; We refer to [19] for more details. Second,
MMAS uses a somewhat more general pheromone
update rule than ACOyy ... Like in ACOgyp r.....,
in MMAS only one solution is used to select the
connections on which to add pheromone, but it al-
lows to choose between the iteration best solution s
and the global best solution 5. It is therefore clear
that Theorem 1 holds for MMAS.

In MMAS it was shown experimentally that a
good strategy is to choose more and more often the
global best solution for the pheromone update, until
reaching a situation in which pheromone is added
only to connections belonging to §. In this case it is
easy to adapt Theorem 2 so that it also holds (we
assume here that no pheromone reinitialization is

13We base the description of MMAS on the version pub-
lished in [19].

141n fact, this is a very minor difference, because MMAS
uses as estimate of Tmqgz the upper pheromone trail limit
defined by Proposition 1. This is done by adapting 7maz each
time a new improved solution is found using g¢(§) instead of
g(s*) in Equation 2, leading to a dynamically changing value
of Tmaz(t).

applied). It suffices to compute the transition pe-
riod to starting from #' = max{t*,t}, where { is the
iteration after which only the global best solution
adds pheromone.!> A similar reasoning applies to
the proofs of Propositions 2, 3, and 4, and therefore
to Corollary 1.

A.2 Ant Colony System

ACS [7], another very successful ACO algorithm,
also belongs to ACO,., . Yet, this is not as imme-
diate to see as for MMAS. Therefore, we first give
some more details on ACS and then we show why
Theorem 1 also applies to it.

ACS differs in three main points from ACOyggp ... -
First, ACS uses the pseudo-random-proportional ac-
tion choice rule: At each construction step an ant
has two possible choices: either it deterministically
chooses the connection with the largest pheromone
trail value, or it performs a biased exploration ac-
cording to Equation 1. The first choice is made
with probability g, the second one with probability
(1 — qo), where 0 < go < 1 is a parameter. Second,
ACS does not apply pheromone evaporation to all
connections. The update rule used in ACS is:!®

ACS_OFFLINE_PHEROMONE_UPDATE

o If f(s¢) < f(8) then § « s,

o V(i,j) €5: 7(i,5) « (L—p)-7(i,5) + p-9(3)
where p is the pheromone evaporation.

Third, each ant in ACS uses a local pheromone
trail update rule which the ants apply immediately
after having crossed a connection during solution
construction:

ACS_ONLINE_STEP_BY_STEP_PHEROMONE_UPDATE

o (e, ¢) € Tpyr : T(eg,¢) + (1=&) -7(ck,c) +&- 70
where &, 0 < £ < 1, and 7 are two parameters.'?

The effect of the local updating rule is to make
a chosen connection less desirable for the follow-
ing ants. It is convenient to remark that the two
pheromone update rules used in ACS are of the form
apr1 = (1—4)-ap+1-bfor k > 1, where a1 and
ay, are 7;;(t+1) and 75 (t), respectively, b = g(3), 7o,
and ¢ = p,£. Then we have

ar =(1—9)F-ag+b-[1—(1-)*

, 15That is, replace every occurence of t* in Theorem 2 with
t.

16As in ACOgp,, ;. , but differently from MMAS, ACS
uses only § in the pheromone update.

17 The value 79, 0 < 7o < g(s*), is a small constant value,
which in ACS is also used to initialize the pheromones. It
can easily be guaranteed that 7o < g(s*), for example, by
first generating a solution s’ and then setting 79 = g(s’)/2.
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whose limit is b as k — oo. The sequence de-
creases for ap > b (with maximum ag) and increases
for ap < b (with maximum b).

Now the question is: How does the convergence
result of ACOgyp,7,,.;, transfer to ACS? First, we ob-
serve that in ACS the maximum amount of phero-
mone is limited by T,,.; = TASS = g(s*) (this bound
is obtained without considering the local pheromone
update). Moreover, the parameter 79 in ACS corre-
sponds to Trmin in ACOyy 7, ..., that is, no pheromone
trail value can fall below 19. This is the case because
Tp is chosen in such a way that it is smaller than'®
g(8) and in this case the limit of the sequence ay,
from above corresponds to 79, giving a lower bound
on the pheromone trail of any solution component
(i, 5)-

The second step is to show that any feasible solu-
tion can be constructed with a non-zero probability.
The easiest way to see this is to rewrite the proba-
bility of making some fixed choice (i, j) in ACS. Let
us assume that connection (7, j) has not the largest
pheromone trail associated. Then the probability of
choosing connection (i, j) can be calculated as the
product of the probability of making a randomized
choice, which is 1 —qg, and the probability of choos-
ing connection (4,7) in this randomized choice. A
bound for the latter is given by P in Equation 3.
Therefore, a lower bound for the probability of mak-
ing any specific choice at any construction step is
(1 — qo) - Pmin and Theorem 1 directly applies to
ACS.

As far as Theorem 2 is concerned, it also applies
to ACS, except that it is no longer possible to eas-
ily derive a deterministic bound on the length of
the transition period ty. But it should be noted
that, once an optimal solution s* has been found,
because of the global best pheromone update rule,
the connections belonging to s* are the only ones
which continue to receive pheromone and that may
increase their pheromone trails, while the phero-
mone trails on all the other connections can only
decrease till the lower limit 7¢ is reached (this hap-
pens each time they are used by some ant due to
the local pheromone update rule).

B. Additional features of ACO algorithms

Many ACO algorithms [5], [6] include some fea-
tures that are not present in ACOygy ;,.;... The most
important are the use of local search algorithms to
improve the solutions constructed by the ants!® and

18See footnote 17.
19The ACO metaheuristic is also applicable to time-varying
problems, in which the topology and costs can change while

the use of heuristic information in the choice of the
next connection or component. In fact, these two
features are also frequently used in MMAS and
ACS. Therefore, a natural question is how these
two extensions affect the convergence proofs for
ACOgp,7,.;, and, hence, also those for ACO,,,,.

Let us first consider the additional use of local
search. Local search tries to improve an ant’s solu-
tion s by iteratively applying small, local changes to
it. Typically, the best solution s’ found in the local
search is returned and used to update the phero-
mone trails. It is rather easy to see that the use of
local search does not affect the convergence prop-
erties of ACOgyp,r,,;,: They only refer to the way
solutions are constructed and hold irrespectively of
the use of a local search. Despite the fact that local
search does not affect the theoretical convergence
behavior of ACOgy,+,.;.., it is known that in prac-
tice ACO algorithms often become more effective
when applying local search [5].

A priori available information on the problem can
be used to derive heuristic information which bi-
ases the probabilistic decisions taken by the ants.
When incorporating such heuristic information into
ACOgyp,r,.;n» Equation 1 becomes

P(eryr =c| T, ) (6)

[7(cx,0)*n(ck,c)”]
Zc [T (crsy) > n(ck,y)P]

ye
= (Ckay)eJck

if (¢, c) € Je,

0 otherwise

where 71(ck, ¢) measures the heuristic desirability of
adding solution component ¢, and § is a param-
eter. Theorem 1 is not affected by the heuris-
tic information, if we have 0 < n(i,j) < +oo for
each (i,j) € £ and 8 < oo. In an extension to
Theorem 2, we still can guarantee that the com-
ponents of s* are the most probable ones to be
chosen, if at each construction step the product
T(ck,c*)® - n(ck,c*)P, where c¢* is the component
we have to choose to construct s*, is maximal. In
fact, this can be guaranteed if r® > rf’ , where
rr = Tmaﬁ/Tmi’n and Tn = nmaz/nmin with Nmin
and 7,4, being the smallest and largest possible
heuristic information for any connection (i, j) € L.

solutions are built. In this paper we consider only applica-
tions to static problems for which topology and costs remain
fixed; in fact, the convergence proof presented in this paper
is meaningless in the case of time-varying problems where an
algorithm must be able to follow the dynamics inherent to
the problem.
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Under this condition, a misleading heuristic infor-
mation is made up by a larger range of possible
pheromone trails. If this condition is verified, we
also can compute a bound for the length ¢, of the
transition period as in Theorem 2, which then be-
comes tg > [(1—p) - Tmaz * Nmaz/(9(5*) - Nmin)| =
[rq - (1= p)/pl.

As a final remark, we note that Ant System, an
ACO algorithm particularly important because it
is the ancestor of all ACO algorithms [3], [8], [9],
as well as some of its variants (for example, eli-
tist Ant System [3], [9], and the rank-based ver-
sion of Ant System [2]) do not belong to ACO, .
In fact, in these three algorithms there is no lower
bound to the value of pheromone trails that can
therefore become null. It is interesting to note that
ACS and MMAS were shown to perform better
than Ant System and its variants on many standard
benchmark problems such as the TSP and the QAP.
Therefore, we are in the fortunate case in which
ACO algorithms for which theoretically convergence
can be proved also show better performance in prac-
tice.

VI. CONCLUSIONS

In this paper we have proved two theorems that
apply to the ACO algorithm called ACOgy ;.-
The first theorem states that the probability of find-
ing at least once an optimal solution P* can be
made greater than 1 — e for any small constant e > 0
if the algorithm is run for a sufficiently large number
of iterations. We have then shown that Theorem 1
applies to a larger class of ACO algorithms called
ACO;,,,, which differ from ACQOgy 7, ;.. in that they
can use any reasonable pheromone trail update rule.

The second theorem, which applies to ACOygyp ...,
states that starting from a fixed number of itera-
tions after the optimal solution has been found, the
pheromone trails will be higher on the connections
belonging to the optimal solution than on any other
connection. Therefore, an ant that at each construc-
tion step chooses the connection with the highest
pheromone trail will deterministically construct the
optimal solution. Additionally, in Corollary 1 we
proved that for ¢ — oo any fixed ant will produce
the optimal solution during the ¢-th iteration with
probability P > 1 — é(Tmin, Tmaz), Where Tpmin and
Tmae are the minimum and maximum values that
can be taken by pheromone trails.

Finally, we have shown that some of these results

can be extended to two of the most used and suc-
cessful ACO algorithms, namely MMAS and ACS.
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