
New Benchmark Instances for the QAP and the
Experimental Analysis of Algorithms

Thomas Stützle1 and Susana Fernandes2

1 Darmstadt University of Technology, Computer Science Department,
stuetzle@informatik.tu-darmstadt.de

2 Universidade do Algarve, Departamento de Matemática, sfer@ualg.pt

Abstract. The quadratic assignment problem arises in a variety of prac-
tical settings. It is known to be among the hardest combinatorial prob-
lems for exact algorithms. Therefore, a large number of heuristic ap-
proaches have been proposed for its solution. In this article we introduce
a new, large set of QAP instances that is intended to allow the sys-
tematic study of the performance of metaheuristics in dependence of
QAP instance characteristics. Additionally, we give computational re-
sults with several high performing algorithms known from literature and
give exemplary results on the influence of instance characteristics on the
performance of these algorithms.

1 Introduction

The QAP can best be described as the problem of assigning a set of objects
to a set of locations with given distances between the locations and given flows
between the objects. The goal is to place the objects on locations in such a way
that the sum of the product between flows and distances is minimal. It is a
model of many real world problems arising in hospital layout, keyboard layout
and other areas [4,5].

More formally, given n objects and n locations, two n × n matrices A = [aij]
and B = [brs], where aij is the distance between locations i and j and brs is the
flow between objects r and s, the QAP can be stated as

min
φ∈Φ

n∑

i=1

n∑

j=1

aφiφj
bij (1)

where Φ is the set of all permutations of the set of integers {1, . . . , n}, and φi

gives the location of object i in the current solution φ ∈ Φ.
The QAP is a NP-hard optimization problem [17]. It is considered as one of

the hardest optimization problems since the largest instances that can be solved
today with exact algorithms are limited to instances of size around 30 [1,13]:
the largest, non-trivial instance from QAPLIB [12], a benchmark collection for
the QAP, solved to optimality has 36 locations [3]. In practice, the only feasible
way to solve large QAP instances is to apply heuristic algorithms which find
very high quality solutions in short computation time. Several such algorithms

J. Gottlieb and G.R. Raidl (Eds.): EvoCOP 2004, LNCS 3004, pp. 199–209, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [594.962 841.96] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 24000 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 10.0 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

200 T. Stützle and S. Fernandes

have been proposed which include algorithms like simulated annealing [6], tabu
search [2,18,22], genetic algorithms [10,16,8], GRASP [14], ant algorithms [11,
15,21,20], and scatter search [7].

Previous research results show that the characteristics of the QAP instances
strongly influence the relative performance of the various algorithmic techniques
for the QAP [23,11,21,19]. Based on the input data, two measures were identified
that have significant influence on the relative performance of metaheuristics, the
(flow) dominance that corresponds to the variation coefficient, i.e. the standard
deviation of the (flow) matrix entries divided by their average value, and the
sparsity of the matrix, i.e. the fraction of zero entries [16,21]. Similarly, the
performance of metaheuristics for the QAP has been related to search space
characteristics like ruggedness and fitness distance correlations [16,21]. However,
currently there is still a strong lack of (i) a complete understanding of how
exactly the relative performance of different metaheuristics depends on instance
characteristics, (ii) knowledge of how input data characteristics of QAP instances
and search space features relate one to each other, and (iii) even the relative
performance of algorithms is not clear because of the different hardware and
implementation details used in the various researches. Our goal is to improve this
situation through the introduction of a new, large set of benchmark instances
that offers a range of instances with different sparsities and flow dominances and
using these instances for a systematic analysis of metaheuristic implementations
that are as much as possible based on the same data structures. In this paper,
Section 2 describes the set of new benchmark instances and Section 3 exemplifies
the analysis of the influence of QAP instance characteristics on the relative
performance of various metaheuristic implementations. We conclude in Section 4.

2 Benchmark Instances

2.1 Instances from QAPLIB

It is known that the particular type of a QAP instance has a considerable influ-
ence on the performance of heuristic methods [23]. For example, the instances
available from QAPLIB have been classified by Taillard into four classes. Despite
the fact that QAPLIB comprises about 130 instances, there are several disadvan-
tages associated for experimental analysis. First, many of the QAPLIB instances
are too small to pose a real challenge to the best available metaheuristic algo-
rithms for the QAP and only a small number of instances of a size with n ≥ 50
remain (the largest instance is of size n = 256 and only one instance of this size
exists).1 Second, with a small number of instances, one may introduce a strong
1 For example, the high performing iterated local search algorithm from Stützle [19]

on all except 18 instances from QAPLIB finds the proven optimal or best known
solutions in every single trial of limited length (these results were measured across at
least 25 trials of a maximal length of 1200 seconds on a 1.2 GHz Athlon processor);
most of these instances are actually ”solved” on average within few seconds. However,
most QAPLIB instances, including also the small ones of size about 20, are still very
challenging for exact algorithms.

New Benchmark Instances for the QAP 201

bias when solving these instances with metaheuristics due to overfitting effects.
Third, the instances in QAPLIB do not vary systematically in their character-
istics and therefore their utility is very limited for analyzing the performance of
metaheuristics in dependence of instance characteristics.

Other, new instances that were designed to be hard were proposed by Tail-
lard and Drezner [9]. Taillard’s instances are available at http://ina.eivd.ch/
collaborateurs/etd/problemes.dir/qap.dir/qap.html and Drezner’s in-
stances are available at http://business.fullerton.edu/zdrezner/programs.htm.
However, these instances have very particular features and the instance charac-
teristics of the two new classes of instances are rather similar, limiting the scope
of experimental studies. Nevertheless, these instances are interesting for studies
that examine, for which type of instances metaheuristic instances may fail.

2.2 New Random QAP Instances

Because of the limitations associated with the instances from QAPLIB and
those of other sources, we generated a large number of instances with vary-
ing characteristics. The set of instances was generated in such a way that
(i) instance characteristics are systematically varied and (ii) that it is large
enough to allow systematic studies on the dependence of the performance
of metaheuristics on instance characteristics. These instances were also used
in the experimental evaluation of several metaheuristics in the Metaheuris-
tics Network (see also www.metaheuristics.net) and are available at URL
www.intellektik.informatik.tu-darmstadt.de/˜tom/qap.html.

Instance generation. The instance generation is done in such a way that
instances with widely different syntactic features concerning the flow dominance
values of the matrix entries (the dominance value is the variation coefficient
of the matrix entries) and the sparsity of the matrix entries (which measures
the percentage of zero matrix entries) can be generated. These two measures
strongly influence the characteristics of the QAP instances and are conjectured
to also have a strong influence on metaheuristics’ performance. As a second
important parameter we considered two different ways of generating the distance
matrix, which allows to generate distance matrices with different structures. In
particular, for the distance matrix we applied two different ways of generating
the distance matrix.

Euclidean distances: In a first approach the distance matrix corresponds to
the Euclidean distance between n points in the plane. These points are gen-
erated in such a way that they fall into several clusters of varying size. The
characteristics of the cluster (location, number of points) are generated as
follows
– generate a random number k according to a uniform distribution in

[0, K], where K is a parameter.
– generate a cluster center (cx, cy), where cx and cy are randomly chosen

according to a uniform distribution in [0, 300].

http://ina.eivd.ch/
collaborateurs/etd/problemes.dir/qap.dir/qap.html
http://business.fullerton.edu/zdrezner/programs.htm
www.metaheuristics.net
www.intellektik.informatik.tu-darmstadt.de/~tom/qap.html

202 T. Stützle and S. Fernandes

– randomly choose the coordinates of the k cluster points in a square
centered around (cx, cy):
1. generate a and b randomly according to a uniform distribution in

[−m/2, m/2], where m is a parameter,
2. set x = cx + a and y = cy + b.

These steps are repeated until n points have been generated.
Manhattan distances: In a second approach, the distance matrix corresponds

to the pairwise distances between all the nodes on a A × B grid, where the
distance is calculated as the Manhattan distance between the points on a
grid.

The reasons for the choice of the different distance matrices are the follow-
ing. Instances based on Euclidean distances will have most probably only one
single optimal solution and by different parameter settings for the generation of
the distance matrices, the clustering of locations often encountered in real-life
QAP instances can be imitated. Instances with a distance matrix based on the
Manhattan distance of points on a grid have, due to symmetries in the matrix,
at least four optimal solutions which are at a maximum distance possible from
each other2. Moreover, the distance matrices show a much lower clustering. Ad-
ditionally, some real-life instances have distances derived from points on a grid.

Different ways of generating the flow matrix are also considered. The flow
matrix for all instances are asymmetric and have a null diagonal. Here, in par-
ticular, we generate instances which have a strongly varying flow dominance and
sparsity. For the generation of the flow matrix we considered two different cases:
(i) the flow entries are randomly generated, (ii) flow entries are structured in the
sense that clusters of objects exist which have a significant interaction.

Random flows: The generation of the random flow matrices uses the following
parameters:
– sp, with 0 ≤ sp < 1, indicates the sparsity of the flow matrix
– a and b determine the flow values.

Each flow matrix entry is then generated by the following routine

double x = random->next(); % a random number in [0,1]
if (x < sp)
return 0;

else {
x = random->next();
return (unsigned long int) MAX(1,pow((a * x),b));

}

where x is a random number uniformly distributed in [0, 1]. By varying sp we
can generate instances of arbitrary sparsity. The parameters a and b allow
to vary the distribution of the matrix entries according to y = (a · x)b.

2 As the distance between two solutions we use here a straightforward extension of the
Hamming distance that counts the number of different positions in two permutations
corresponding to the number of different assignments.

New Benchmark Instances for the QAP 203

The instances below are generated with the following combinations of a
and b: (100, 1), which corresponds to uniformly distributed matrix entries
in [0, 100] (the same as the unstructured instances of one of the instances
classes defined by Taillard [23]), (10, 2), (3.5, 3), (2, 7). For fixed value of sp,
the instances with larger exponent tend to have higher flow dominance.

Structured flows: In real applications, groups of objects tend to have typically
a large interaction, while the interaction among different groups tends to be
smaller. Instances with structured flow matrix entries take these properties
into account. This is done in an indirect way as follows: We generate n
points (objects) randomly according to a uniform distribution in a square of
dimension 100 × 100. In the flow matrix a flow between two objects i and
j exists if the distance between the points i and j is below some constant
threshold value d: “Close” objects tend to have flow, while for ”far” objects
the flow is zero. The non-zero flow entries are generated like in the random
flow case as max{1, (a · x)b}. Note that the threshold value d has a strong
influence on the sparsity (the smaller d, the less objects will exist which
exchange flow) and the flow dominance of the flow matrix.

Structured flows plus: In the flow generation of the structured flows, distant
objects will not exchange any flow. In a straightforward extension, we gener-
ate with a small probability p flows between objects for which the associated
points have a distance larger than the threshold d. The non-zero flow entries
are generated like in the random flow case as max{1, (a · x)b}.

Benchmark instances. We distinguish among six different classes of instances
that differ in the way different variants for the distance matrix and the flow
matrix are combined. The class identifiers are

RandomRandom: Random distance matrix and random flows;
RandomStructured: Random distance matrix and structured flows;
RandomStructuredPlus: Random distance matrix and structured flows with

connections among clusters of objects;
GridRandom: Grid-based distance matrix and random flows;
GridStructured: Grid-based distance matrix and structured flows;
GridStructuredPlus: Grid-based distance matrix and structured flows with

connections among clusters of objects.

For each of the six classes we have randomly generated instances of different
sizes with n ∈ {50, 100, 150, 200, 300, 500}. For each class a number of instances
differing in the above defined parameters for generating the matrix entries were
generated resulting in a total of 644 new benchmark instances.

To give an impression of the variety of the instance characteristics within
these instances, in Figure 1 we indicate the variation of the flow dominance and
the sparsity of the instances across all the 136 instances of size 50. In that plot
four different curves are visible. This pattern is due to the influence of the pa-
rameters a and b on the generation of the flow matrix. In general, the plot shows
that there is a strong, non-linear relationship between the flow dominance and

204 T. Stützle and S. Fernandes

200 400 600 800 1000 1200

0.0

0.2

0.4

0.6

0.8

1.0

All instances
 dominace VS sparsity

correlation: 0.752
dominance

sp
ar

sit
y

Fig. 1. Plots of the relationship between flow dominance and sparsity of the instances
of size 50. On the x-axis is given the flow dominance and on the y-axis is given the
sparsity of the instances.

the sparsity. Similarly, we investigated properties like autocorrelation length and
the number of improvement steps for reaching a local optimum; these measures
give some hint on the ruggedness of the search landscape.

3 Experimental Results

As said, the set of new instances is intended to allow the study of the perfor-
mance of metaheuristics in dependence of instance characteristics. In this section
we give an example of the experimental results and insights that can be obtained
using the set of new instances. Here, we limit our analysis to instances of size
50 and give performance results for six different algorithms. In particular, we
run robust tabu search (RoTS) [22], a simulated annealing (SA) algorithm [6],
MAX–MIN Ant System (MMAS) [21], two iterated local search (ILS) vari-
ants, a population-based one (ES-ILS) and a non-population based one (ILS)
[19], and fast ant system (FANT) [24]. All the algorithms were using the param-
eter settings as proposed by their original authors. The choice of these algorithms
was based on the desire to have different types of metaheuristics known to per-
form well for specific classes of instances. (In an extended version of this article
we will include a number of additional algorithms including most of the current
well known state-of-the-art algorithms.)

All these algorithms were implemented in C based on the same underlying
local search procedure and using the same data structures as much as possible.
Each algorithm was run 10 times on each of the instances for 150 seconds on a
Pentium III 700 MHz processor under SUSE Linux 7.1. Note that the stopping

New Benchmark Instances for the QAP 205

fa
nt

ils
ils

−e
s

m
m

as
ro

ts
sa

0 10 20 30 40 50 60

Ranks after 150s of all instances

136 instances

fa
nt

ils
ils

−e
s

m
m

as
ro

ts
sa

0 10 20 30 40 50 60

Ranks after 1.5s of all instances

136 instances

Fig. 2. Boxplots of the ranks for the six metaheuristics measured across all the instances
of size 50 (left: stopping criterion 150 seconds; right: stopping criterion 1.5 seconds).
The x-axis gives the rank for each single solution found by an algorithm. Note that for
each instance a total of 60 trials was run and therefore on each instance the range of
the ranks is from 1 to 60.

criterion of 150 seconds was chosen in such a way that RoTS can do about
10 000n iterations on our computer, where n is the instance size.

The experimental analysis was based on ranking the results returned by the
algorithms. For every algorithm the best solution achieved in each single trial
was saved and then all these values were ranked. Since each of the six algorithms
was run ten times, this results overall in 60 possible ranks. Based on the ranks
achieved by each algorithm, we used boxplots to visualize the results achieved.
In the boxplots, the central box shows the data between the two quartiles, with
the median being represented by a line. “Whiskers” extend to the most extreme
data point which is no more than 1.5 times the interquartile range from the box.
If there are data points further away than the extensions of the whiskers, these
data are indicated by small circles.

In Figure 2 we give a summary of the results when ranking across all the
136 instances of size 50 (hence, each box is based on 1360 data points), when
stopping the algorithms after 150 seconds (left side) and when stopping the algo-
rithms after 1.5 seconds (right side). The plots suggest that there are significant
differences among the algorithms, which is confirmed by using Friedman rank
sum tests that rejects the null hypothesis that says that all the results are equal.
(We applied the Friedman rank sum test to all the data presented in the follow-
ing figures; in all cases this test indicates that there exist significant differences
in the performance of the algorithms.) In fact, for the largest computation times,
ES-ILS appears to be the best performing algorithm followed by MMAS and
ILS. The worst performing algorithms are FANT and SA. The ranking of the
algorithms is different, however, if only short computation times are allowed.

206 T. Stützle and S. Fernandes

fa
nt

ils
ils

−e
s

m
m

as
ro

ts
sa

0 10 20 30 40 50 60

Ranks for RandomRandom instances

36 instances

fa
nt

ils
ils

−e
s

m
m

as
ro

ts
sa

0 10 20 30 40 50 60

Ranks for RandomStructured instances

16 instances

fa
nt

ils
ils

−e
s

m
m

as
ro

ts
sa

0 10 20 30 40 50 60

Ranks for RandomStructuredPlus instances

16 instances

fa
nt

ils
ils

−e
s

m
m

as
ro

ts
sa

0 10 20 30 40 50 60

Ranks for GridRandom instances

36 instances

fa
nt

ils
ils

−e
s

m
m

as
ro

ts
sa

0 10 20 30 40 50 60

Ranks for GridStructured instances

16 instances

fa
nt

ils
ils

−e
s

m
m

as
ro

ts
sa

0 10 20 30 40 50 60

Ranks for GridStructuredPlus instances

16 instances

Fig. 3. Boxplots of the ranks for the six metaheuristics measured across the six dif-
ferent instance classes. The x-axis gives the rank for each single solution found by an
algorithm. The upper plots are random distance matrices, while the lower plots are for
instance classes where the distance matrix is based on a grid.

In fact, when allowing only 1.5 seconds of computation time, ILS gives the best
results followed by ES-ILS, MMAS, and RoTS and FANT. The reason that ILS
is now much better performing than either ES-ILS or MMAS is that the lat-
ter two algorithms are population-based algorithms and with short computation
times, they were only able to run few iterations. Differently, ILS uses only one
single solution at each step and therefore it is also quicker in identifying high
quality solutions early in the search. It is also noteworthy that FANT is now,
relative to the other algorithms, much better performing than for longer trials.
In fact, FANT was designed to achieve good solutions quickly [24].

Further analysis was done to investigate the dependence of the relative per-
formance of the algorithms on the type of instances and on features like the flow
dominance. In Figure 3 we give results for the six different instance classes for
the 150 seconds time limit (see page 203 for a description of the six classes).
The results show that the class of instances can have significant influence of
the relative performance of the metaheuristics tested here. For example, on the
instances with random distance matrix, FANT catches up in performance with
RoTS, while it is significantly worse than RoTS on instances with Grid distance
matrix. Similarly, MMAS catches up with ES-ILS on the instances with ran-
dom distance matrix, while on the instances with grid distance matrix ES-ILS
appears to be superior to MMAS.

New Benchmark Instances for the QAP 207

Fig. 4. Boxplots of the ranks for the six metaheuristics measured across the instances
classified by the flow dominance. The x-axis gives the rank for each single solution
found by an algorithm. Note that for each instance a total of 60 trials was run and
therefore on each instance the range of the ranks is from 1 to 60.

In Figure 4 we present the results in dependence of the flow dominance
values of the various instances. In particular, we divided the range of observed
flow dominance into six intervals from [58; 150],]150; 200],]200; 250],]250; 350],
]350; 550],]550; 1312]. For increasing flow dominance, the performance of RoTS is
decreasing when compared to ES-ILS, ILS, and MMAS, which can be observed,
for example, in the increasing differences concerning the medians obtained by
the various algorithms. When comparing ES-ILS to MMAS it becomes clear
that the advantage of ES-ILS over MMAS is mainly because of the better
performance on instance with medium values of the flow dominance in the range
from 250 to 550. This observations is true for the largest time limits, while for
shorter time limits the advantage of ES-ILS over MMAS appears to be larger
(the corresponding plots are not shown here); this may suggest that MMAS is
taking longer time to converge than ES-ILS.

4 Conclusions

In this paper we introduced a new set of QAP instances that is intended for
the systematic analysis of the performance of metaheuristics in dependence of

208 T. Stützle and S. Fernandes

instance characteristics. We exemplified the use of these classes exemplifying the
performance differences of six well known metaheuristic implementations using
an analysis based on ranking procedures. Currently we are extending the scope
of this analysis strongly by (i) including a larger number of metaheuristics into
the performance analysis, (ii) applying the algorithms also to the larger instances
and to all QAPLIB instances, and (iii) examining the dependence of the algo-
rithms’ performance on measures based on search space characteristics (instead
of pure syntactic features of the instance date) like fitness-distance correlation,
the ruggedness of the search spaces, or the occurrence of plateaus in the search
space. The ultimate goal of this research is to deepen our understanding of the
performance of different metaheuristics on the QAP and, more in general, to
learn about the relation between metaheuristic performance and search space
characteristics of the problem under solution.

Acknowledgments. We would like to thank Luis Paquete for his suggestions
on this research and his help with R and several scripts to extract the results.
Susana acknowledges support from a joint DAAD-ICCTI project. This work was
supported by the Metaheuristics Network, a Research Training Network funded
by the Improving Human Potential programme of the CEC, grant HPRN-CT-
1999-00106. The information provided is the sole responsibility of the authors
and does not reflect the Community’s opinion. The Community is not responsible
for any use that might be made of data appearing in this publication.

References

1. K. M. Anstreicher, N. W. Brixius, J.-P. Goux, and J. Linderoth. Solving large
quadratic assignment problems on computational grids. Mathematical Program-
ming, 91(3):563–588, 2002.

2. R. Battiti and G. Tecchiolli. The reactive tabu search. ORSA Journal on Com-
puting, 6(2):126–140, 1994.

3. N. W. Brixius and K. M. Anstreicher. The Steinberg wiring problem. Technical
report, College of Business Administration, University of Iowa, Iowa City, USA,
October 2001.

4. R. E. Burkard, E. Çela, P. M. Pardalos, and L. S. Pitsoulis. The quadratic assign-
ment problem. In P. M. Pardalos and D.-Z. Du, editors, Handbook of Combinatorial
Optimization, volume 2, pages 241–338. Kluwer Academic Publishers, 1998.

5. E. Çela. The Quadratic Assignment Problem: Theory and Algorithms. Kluwer
Academic Publishers, Dordrecht, The Netherlands, 1998.

6. D. T. Connolly. An improved annealing scheme for the QAP. European Journal
of Operational Research, 46(1):93–100, 1990.

7. V.-D. Cung, T. Mautor, P. Michelon, and A. Tavares. A scatter search based
approach for the quadratic assignment problem. In T. Baeck, Z. Michalewicz,
and X. Yao, editors, Proceedings of the 1997 IEEE International Conference on
Evolutionary Computation (ICEC’97), pages 165–170. IEEE Press, Piscataway,
NJ, USA, 1997.

8. Z. Drezner. A new genetic algorithm for the quadratic assignment problem. IN-
FORMS Journal on Computing, 15(3):320–330, 2003.

New Benchmark Instances for the QAP 209

9. Z. Drezner, P. Hahn, and É. D. Taillard. A study of quadratic assignment prob-
lem instances that are difficult for meta-heuristic methods. Annals of Operations
Research, to appear.

10. C. Fleurent and J. A. Ferland. Genetic hybrids for the quadratic assignment
problem. In P. M. Pardalos and H. Wolkowicz, editors, Quadratic Assignment
and Related Problems, volume 16 of DIMACS Series on Discrete Mathematics and
Theoretical Computer Science, pages 173–187. American Mathematical Society,
Providence, RI, USA, 1994.

11. L. M. Gambardella, É. D. Taillard, and M. Dorigo. Ant colonies for the quadratic
assignment problem. Journal of the Operational Research Society, 50(2):167–176,
1999.

12. P. Hahn. QAPLIB - a quadratic assignment problem library.
http://www.seas.upenn.edu/qaplib/, 2003. Version visited last on 15 September
2003.

13. P. M. Hahn, W. L. Hightower, T. A. Johnson, M. Guignard-Spielberg, and C. Rou-
cairol. Tree elaboration strategies in branch and bound algorithms for solving
the quadratic assignment problem. Yugoslavian Journal of Operational Research,
11(1):41–60, 2001.

14. Y. Li, P. M. Pardalos, and M. G. C. Resende. A greedy randomized adaptive
search procedure for the quadratic assignment problem. In P. M. Pardalos and
H. Wolkowicz, editors, Quadratic Assignment and Related Problems, volume 16
of DIMACS Series on Discrete Mathematics and Theoretical Computer Science,
pages 237–261. American Mathematical Society, Providence, RI, USA, 1994.

15. V. Maniezzo. Exact and approximate nondeterministic tree-search procedures for
the quadratic assignment problem. INFORMS Journal on Computing, 11(4):358–
369, 1999.

16. P. Merz and B. Freisleben. Fitness landscape analysis and memetic algorithms for
the quadratic assignment problem. IEEE Transactions on Evolutionary Computa-
tion, 4(4):337–352, 2000.

17. S. Sahni and T. Gonzalez. P-complete approximation problems. Journal of the
ACM, 23(3):555–565, 1976.

18. J. Skorin-Kapov. Tabu search applied to the quadratic assignment problem. ORSA
Journal on Computing, 2(1):33–45, 1990.

19. T. Stützle. Iterated local search for the quadratic assignment problem. Technical
Report AIDA-99-03, FG Intellektik, FB Informatik, TU Darmstadt, 1999.

20. T. Stützle and M. Dorigo. ACO algorithms for the quadratic assignment problem.
In D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimization, pages
33–50. McGraw Hill, London, UK, 1999.

21. T. Stützle and H. H. Hoos. MAX–MIN Ant System. Future Generation Com-
puter Systems, 16(8):889–914, 2000.

22. É. D. Taillard. Robust taboo search for the quadratic assignment problem. Parallel
Computing, 17(4–5):443–455, 1991.

23. É. D. Taillard. Comparison of iterative searches for the quadratic assignment
problem. Location Science, 3(2):87–105, 1995.

24. É. D. Taillard. FANT: Fast ant system. Technical Report IDSIA-46-98, IDSIA,
Lugano, Swiss, 1998.

http://www.seas.upenn.edu/qaplib/

	Introduction
	Benchmark Instances
	Instances from QAPLIB
	New Random QAP Instances

	Experimental Results
	Conclusions

