
The Ant Colony Optimization Metaheuristic:
Algorithms, Applications, and Advances∗

Technical Report IRIDIA-2000-32

Marco Dorigo
Université Libre de Bruxelles, IRIDIA,

Avenue Franklin Roosevelt 50, CP 194/6, 1050 Brussels, Belgium
mdorigo@ulb.ac.be

Thomas Stützle
TU Darmstadt, Computer Science, Intellectics Group

Alexanderstr. 10, D-64283 Darmstadt, Germany
stuetzle@informatik.tu-darmstadt.de

1 Introduction

Ant Colony Optimization (ACO) [31, 32] is a recently proposed metaheuristic ap-
proach for solving hard combinatorial optimization problems. The inspiring source
of ACO is the pheromone trail laying and following behavior of real ants which use
pheromones as a communication medium. In analogy to the biological example,
ACO is based on the indirect communication of a colony of simple agents, called
(artificial) ants, mediated by (artificial) pheromone trails. The pheromone trails
in ACO serve as a distributed, numerical information which the ants use to prob-
abilistically construct solutions to the problem being solved and which the ants
adapt during the algorithm’s execution to reflect their search experience.

The first example of such an algorithm is Ant System (AS) [29, 36, 37, 38],
which was proposed using as example application the well known Traveling Sales-
man Problem (TSP) [58, 74]. Despite encouraging initial results, AS could not
compete with state-of-the-art algorithms for the TSP. Nevertheless, it had the im-
portant role of stimulating further research on algorithmic variants which obtain

∗To appear in Metaheuristics Handbook, F. Glover and G. Kochenberger (Eds.), International
Series in Operations Research and Management Science, Kluwer, 2001.

1

much better computational performance, as well as on applications to a large va-
riety of different problems. In fact, there exists now a considerable amount of
applications obtaining world class performance on problems like the quadratic as-
signment, vehicle routing, sequential ordering, scheduling, routing in Internet-like
networks, and so on [21, 25, 44, 45, 66, 83]. Motivated by this success, the ACO
metaheuristic has been proposed [31, 32] as a common framework for the existing
applications and algorithmic variants. Algorithms which follow the ACO meta-
heuristic will be called in the following ACO algorithms.

Current applications of ACO algorithms fall into the two important problem
classes of static and dynamic combinatorial optimization problems. Static prob-
lems are those whose topology and cost do not change while the problems are being
solved. This is the case, for example, for the classic TSP, in which city locations
and intercity distances do not change during the algorithm’s run-time. Differently,
in dynamic problems the topology and costs can change while solutions are built.
An example of such a problem is routing in telecommunications networks [25], in
which traffic patterns change all the time. The ACO algorithms for solving these
two classes of problems are very similar from a high-level perspective, but they dif-
fer significantly in implementation details. The ACO metaheuristic captures these
differences and is general enough to comprise the ideas common to both applica-
tion types.

The (artificial) ants in ACO implement a randomized construction heuristic which
makes probabilistic decisions as a function of artificial pheromone trails and pos-
sibly available heuristic information based on the input data of the problem to be
solved. As such, ACO can be interpreted as an extension of traditional construction
heuristics which are readily available for many combinatorial optimization prob-
lems. Yet, an important difference with construction heuristics is the adaptation of
the pheromone trails during algorithm execution to take into account the cumulated
search experience.

The rest of this chapter is organized as follows. In Section 2, we briefly overview
construction heuristics and local search algorithms. In Section 3 we define the ants’
behavior, the ACO metaheuristic, and the type of problems to which it can be ap-
plied. Section 4 outlines the inspiring biological analogy and describes the histor-
ical developments leading to ACO. In Section 5 we illustrate how the ACO meta-
heuristic can be applied to different types of problems and we give an overview of
its successful applications. Section 6 discusses several issues arising in the applica-
tion of the ACO metaheuristic, while in Section 7 we present recent developments
and conclude in Section 8 indicating future research directions.

2

procedure Greedy Construction Heuristic
sp = empty solution
while sp no complete solution do

e = GreedyComponent(sp)
sp = sp ⊗ e

end
return sp

end Greedy Construction Heuristic

Figure 1: Algorithmic skeleton of a greedy construction heuristic. The addition of
component e to a partial solution sp is denoted by the operator ⊗.

2 Traditional approximation approaches

Many important combinatorial optimization problems are hard to solve. The notion
of problem hardness is captured by the theory of computational complexity [47, 72]
and for many important problems it is well known that they are NP-hard, that is
the time we needed to solve an instance in the worst case grows exponentially with
instance size. Often, approximate algorithms are the only feasible way to obtain
near optimal solutions at relatively low computational cost.

Classically, most approximate algorithms are either construction algorithms or
local search algorithms.1 These two types of methods are significantly different,
because construction algorithms work on partial solutions trying to extend these in
the best possible way to complete problem solutions, while local search methods
move in the search space of complete solutions.

2.1 Construction algorithms

Construction algorithms build solutions to a problem under consideration in an in-
cremental way starting with an empty initial solution and iteratively adding oppor-
tunely defined solution components without backtracking until a complete solution
is obtained. In the simplest case, solution components are added in random order.
Often better results are obtained if a heuristic estimate of the myopic benefit of
adding solution components is taken into account. Greedy construction heuristics
add at each step a solution component which achieves the maximal myopic benefit
as measured by some heuristic information. An algorithmic outline of a greedy

1Other approximate methods are also conceivable. For example, when stopping exact methods,
like Branch & Bound, before completion [4, 56] (for example, after some given time bound, or when
some guarantee on the solution quality is obtained through the use of lower and upper bounds), we
can convert exact algorithms into approximate ones.

3

construction heuristic is given in Figure 1. The function GreedyComponent re-
turns the solution component e with the best heuristic estimate. Solutions returned
by greedy algorithms are typically of better quality than randomly generated so-
lutions. Yet, a disadvantage of greedy construction heuristics is that only a very
limited number of solutions can be generated. Additionally, greedy decisions in
early stages of the construction process strongly constrain the available possibil-
ities at later stages, often determining very poor moves in the final phases of the
solution construction.

As an example consider a greedy construction heuristic for the traveling sales-
man problem (TSP). In the TSP we are given a complete weighted graph G =
(N, A) with N being the set of nodes, representing the cities, and A the set of arcs
fully connecting the nodes N . Each arc is assigned a value dij , which is the length
of arc (i, j) ∈ A. The TSP is the problem of finding a minimal length Hamiltonian
circuit of the graph, where an Hamiltonian circuit is a closed tour visiting exactly
once each of the n = |N | nodes of G. For symmetric TSPs, the distances between
the cities are independent of the direction of traversing the arcs, that is, dij = dji

for every pair of nodes. In the more general asymmetric TSP (ATSP) at least for
one pair of nodes i, j we have dij �= dji.

A simple rule of thumb to build a tour is to start from some initial city and to
always choose to go to the closest still unvisited city before returning to the start
city. This algorithm is known as the nearest neighbor tour construction heuristic.
Figure 2 shows a tour returned by the nearest neighbor heuristic on TSP instance
att532, taken from TSPLIB,2 with 532 cities in the US.

Noteworthy in this example is that there are some few very long links in the
tour, leading to strongly suboptimal solutions. In fact, construction algorithms are
typically the fastest approximate methods, but the solutions they generate often
are not of a very high quality and they are not guaranteed to be optimal with re-
spect to small changes; the results produced by constructive heuristics can often be
improved by local search algorithms.

2.2 Local search

Local search algorithms start from a complete initial solution and try to find a
better solution in an appropriately defined neighborhood of the current solution. In
its most basic version, known as iterative improvement, the algorithm searches the
neighborhood for an improving solution. If such a solution is found, it replaces the
current solution and the local search continues. These steps are repeated until no
improving neighbor solution is found anymore in the neighborhood of the current

2TSPLIB is a benchmark library for the TSP and related problems and is accessible via
http://www.iwr.uni-heidelberg.de/iwr/comopt/software/TSPLIB95

4

0

1000

2000

3000

4000

5000

6000

7000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

NN:att532

Figure 2: Tour returned by the nearest neighbor heuristic on TSP instance att532
from TSPLIB.

procedure IterativeImprovement (s ∈ S)
s′ = Improve(s)
while s′ �= s do

s = s′

s′ = Improve(s)
end
return s

end IterativeImprovement

Figure 3: Algorithmic skeleton of iterative improvement.

solution and the algorithm ends in a local optimum. An outline of an iterative
improvement algorithm is given in Figure 3. The procedure Improve returns a
better neighbor solution if one exists, otherwise it returns the current solution, in
which case the algorithm stops.

The choice of an appropriate neighborhood structure is crucial for the perfor-
mance of the local search algorithm and has to be done in a problem specific way.
The neighborhood structure defines the set of solutions that can be reached from
s in one single step of a local search algorithm. An example neighborhood for
the TSP is the k-opt neighborhood in which neighbor solutions differ by at most k
arcs. Figure 4 shows the example of a 2-opt neighborhood. The 2-opt algorithm
systematically tests whether the current tour can be improved by replacing two

5

2-opt

Figure 4: Schematic illustration of the 2-opt algorithm. The proposed move re-
duces the total tour length if we consider the Euclidean distance between the points.

edges. To fully specify a local search algorithm is needed a neighborhood exami-
nation scheme that defines how the neighborhood is searched and which neighbor
solution replaces the current one. In the case of iterative improvement algorithms,
this rule is called pivoting rule [90] and examples are the best-improvement rule,
which chooses the neighbor solution giving the largest improvement of the objec-
tive function, and the first-improvement rule, which uses the first improved solution
found in the neighborhood to replace the current one. A common problem with lo-
cal search algorithms is that they easily get trapped in local minima and that the
result strongly depends on the initial solution.

3 ACO Metaheuristic

Artificial ants used in ACO are stochastic solution construction procedures that
probabilistically build a solution by iteratively adding solution components to par-
tial solutions by taking into account (i) heuristic information on the problem in-
stance being solved, if available, and (ii) (artificial) pheromone trails which change
dynamically at run-time to reflect the agents’ acquired search experience.

The interpretation of ACO as an extension of construction heuristics is appeal-
ing because of several reasons. A stochastic component in ACO allows the ants to
build a wide variety of different solutions and hence explore a much larger number
of solutions than greedy heuristics. At the same time, the use of heuristic infor-
mation, which is readily available for many problems, can guide the ants towards
the most promising solutions. More important, the ants’ search experience can be
used to influence in a way reminiscent of reinforcement learning [87] the solution
construction in future iterations of the algorithm. Additionally, the use of a colony
of ants can give the algorithm increased robustness and in many ACO applications
the collective interaction of a population of agents is needed to efficiently solve a
problem.

6

The domain of application of ACO algorithms is vast. In principle, ACO can be
applied to any discrete optimization problem for which some solution construction
mechanism can be conceived. In the following of this section, we first define a
generic problem representation which the ants in ACO exploit to construct solu-
tions, then we detail the ants’ behavior while constructing solutions, and finally we
define the ACO metaheuristic.

3.1 Problem representation

Let us consider the minimization problem3 (S, f,Ω), where S is the set of candi-
date solutions, f is the objective function which assigns to each candidate solution
s ∈ S an objective function (cost) value f(s, t),4 and Ω is a set of constraints.
The goal is to find a globally optimal solution sopt ∈ S, that is, a minimum cost
solution that satisfies the constraints Ω.

The problem representation of a combinatorial optimization problem (S, f,Ω)
which is exploited by the ants can be characterized as follows:

• A finite set C = {c1, c2, . . . , cNC
} of components is given.

• The states of the problem are defined in terms of sequences x = 〈ci, cj , . . . ,
ck, . . .〉 over the elements of C. The set of all possible sequences is denoted
by X . The length of a sequence x, that is, the number of components in the
sequence, is expressed by |x|.

• The finite set of constraints Ω defines the set of feasible states X̃ , with X̃ ⊆
X .

• A set S∗ of feasible solutions is given, with S∗ ⊆ X̃ and S∗ ⊆ S.

• A cost f(s, t) is associated to each candidate solution s ∈ S.

• In some cases a cost, or the estimate of a cost, J(xi, t) can be associated to
states other than solutions. If xj can be obtained by adding solution compo-
nents to a state xi then J(xi, t) ≤ J(xj , t). Note that J(s, t) ≡ f(s, t).

Given this representation, artificial ants build solutions by moving on the con-
struction graph G = (C,L), where the vertices are the components C and the set L
fully connects the components C (elements of L are called connections). The prob-
lem constraints Ω are implemented in the policy followed by the artificial ants, as

3The adaptation to a maximization problem is straightforward.
4The parameter t indicates that the the objective function can be time dependent, as it is the case,

for example, in applications to dynamic problems.

7

explained in the next section. The choice of implementing the constraints in the
construction policy of the artificial ants allows a certain degree of flexibility. In
fact, depending on the combinatorial optimization problem considered, it may be
more reasonable to implement constraints in a hard way allowing ants to build only
feasible solutions, or in a soft way, in which case ants can build infeasible solutions
(that is, candidate solutions in S \S∗) that will be penalized, in dependence of their
degree of infeasibility.

3.2 Ant’s behavior

Ants can be characterized as stochastic construction procedures which build solu-
tions moving on the construction graph G = (C,L). Ants do not move arbitrarily
on G, but rather follow a construction policy which is a function of the problem
constraints Ω. In general, ants try to build feasible solutions, but, if necessary, they
can generate infeasible solutions. Components ci ∈ C and connections lij ∈ L can
have associated a pheromone trail τ (τi if associated to components, τij if asso-
ciated to connections) encoding a long-term memory about the whole ant search
process that is updated by the ants themselves, and a heuristic value η (ηi and ηij ,
respectively) representing a priori information about the problem instance defini-
tion or run-time information provided by a source different from the ants. In many
cases η is the cost, or an estimate of the cost, of extending the current state. These
values are used by the ants heuristic rule to make probabilistic decisions on how to
move on the graph.

More precisely, each ant k of the colony has the following properties:

• It exploits the graph G = (C,L) to search for feasible solutions s of mini-
mum cost. That is, solutions s such that f̂s = mins f(s, t).

• It has a memoryMk that it uses to store information about the path it fol-
lowed so far. Memory can be used (i) to build feasible solutions (i.e., to
implement constraints Ω), (ii) to evaluate the solution found, and (iii) to re-
trace the path backward to deposit pheromone.

• It can be assigned a start state xk
s and one or more termination conditions

ek. Usually, the start state is expressed either as a unit length sequence (that
is, a single component sequence), or an empty sequence.

• When in state xr = 〈xr−1, i〉, if no termination condition is satisfied, it
moves to a node j in its neighborhood N k

i , that is, to a state 〈xr, j〉 ∈ X .
Often, moves towards feasible states are favoured, either via appropriately
defined heuristic values η, or through the use of the ants’ memory.

8

• It selects the move by applying a probabilistic decision rule. Its probabilis-
tic decision rule is a function of (i) locally available pheromone trails and
heuristic values, (ii) the ant’s private memory storing its past history, and
(iii) the problem constraints.

• The construction procedure of ant k stops when at least one of the termina-
tion conditions ek is satisfied.

• When adding a component cj to the current solution it can update the phero-
mone trail associated to it or to the corresponding connection. This is called
online step-by-step pheromone update.

• Once built a solution, it can retrace the same path backward and update the
pheromone trails of the used components or connections. This is called on-
line delayed pheromone update.

It is important to note that ants move concurrently and independently and that
each ant is complex enough to find a (probably poor) solution to the problem under
consideration. Typically, good quality solutions emerge as the result of the col-
lective interaction among the ants which is obtained via indirect communication
mediated by the information ants read/write in the variables storing pheromone
trail values. In a way, this is a distributed learning process in which the single
agents, the ants, are not adaptive themselves but, on the contrary, they adaptively
modify the way the problem is represented and perceived by other ants.

3.3 The metaheuristic

Informally, the behavior of ants in an ACO algorithm can be summarized as fol-
lows. A colony of ants concurrently and asynchronously move through adjacent
states of the problem by building paths on G. They move by applying a stochastic
local decision policy that makes use of pheromone trails and heuristic information.
By moving, ants incrementally build solutions to the optimization problem. Once
an ant has built a solution, or while the solution is being built, the ant evaluates the
(partial) solution and deposits pheromone trails on the components or connections
it used. This pheromone information will direct the search of the future ants.

Besides ants’ activity, an ACO algorithm includes two more procedures: phero-
mone trail evaporation and daemon actions (this last component being optional).
Pheromone evaporation is the process by means of which the pheromone trail in-
tensity on the components decreases over time. From a practical point of view,
pheromone evaporation is needed to avoid a too rapid convergence of the algo-
rithm towards a sub-optimal region. It implements a useful form of forgetting,

9

procedure ACO metaheuristic
ScheduleActivities

ManageAntsActivity()
EvaporatePheromone()
DaemonActions() {Optional}

end ScheduleActivities
end ACO metaheuristic

Figure 5: The ACO metaheuristic in pseudo-code. Comments are enclosed in
braces. The procedure DaemonActions() is optional and refers to centralized
actions executed by a daemon possessing global knowledge.

favoring the exploration of new areas of the search space. Daemon actions can be
used to implement centralized actions which cannot be performed by single ants.
Examples are the activation of a local optimization procedure, or the collection of
global information that can be used to decide whether it is useful or not to deposit
additional pheromone to bias the search process from a non-local perspective. As a
practical example, the daemon can observe the path found by each ant in the colony
and choose to deposit extra pheromone on the components used by the ant that built
the best solution. Pheromone updates performed by the daemon are called off-line
pheromone updates.

In Figure 5 the ACO metaheuristic behavior is described in pseudo-code. The
main procedure of the ACO metaheuristic manages, via the ScheduleActivities
construct, the scheduling of the three above discussed components of ACO algo-
rithms: (i) management of ants’ activity, (ii) pheromone evaporation, and (iii) dae-
mon actions. The ScheduleActivities construct does not specify how these three
activities are scheduled and synchronized. In other words, it does not say whether
they should be executed in a completely parallel and independent way, or if some
kind of synchronization among them is necessary. The designer is therefore free to
specify the way these three procedures should interact.

4 History of ACO algorithms

The first ACO algorithm proposed was Ant System (AS). AS was applied to some
rather small instances of the traveling salesman problem (TSP) with up to 75 cities.
It was able to reach the performance of other general-purpose heuristics like evo-
lutionary computation [29, 38]. Despite these initial encouraging results, AS could
not prove to be competitive with state-of-the-art algorithms specifically designed

10

for the TSP when attacking large instances. Therefore, a substantial amount of
recent research has focused on ACO algorithms which show better performance
than AS when applied, for example, to the TSP. In the following of this section we
first briefly introduce the biological metaphor on which AS and ACO are inspired,
and then we present a brief history of the developments that took from the origi-
nal AS to the most recent ACO algorithms. In fact, these more recent algorithms
are direct extensions of AS which add advanced features to improve the algorithm
performance.

4.1 Biological analogy

In many ant species, individual ants may deposit a pheromone (a particular chemi-
cal that ants can smell) on the ground while walking [50]. By depositing pheromone
they create a trail that is used, for example, to mark the path from the nest to food
sources and back. In fact, by sensing pheromone trails foragers can follow the path
to food discovered by other ants. Also, they are capable of exploiting pheromone
trails to choose the shortest among the available paths taking to the food.

Deneubourg and colleagues [22, 50] used a double bridge connecting a nest of
ants and a food source to study pheromone trail laying and following behavior in
controlled experimental conditions.5 They ran a number of experiments in which
they varied the ratio between the length of the two branches of the bridge. The
most interesting, for our purposes, of these experiments is the one in which one
branch was longer than the other. In this experiment, at the start the ants were left
free to move between the nest and the food source and the percentage of ants that
chose one or the other of the two branches was observed over time. The outcome
was that, although in the initial phase random oscillations could occur, in most
experiments all the ants ended up using the shorter branch.

This result can be explained as follows. When a trial starts there is no pheromone
on the two branches. Hence, the ants do not have a preference and they select with
the same probability any of the two branches. Therefore, it can be expected that, on
average, half of the ants choose the short branch and the other half the long branch,
although stochastic oscillations may occasionally favor one branch over the other.
However, because one branch is shorter than the other, the ants choosing the short
branch are the first to reach the food and to start their travel back to the nest.6 But
then, when they must make a decision between the short and the long branch, the

5The experiment described was originally executed using a laboratory colony of Argentine ants
(Iridomyrmex humilis). It is known that these ants deposit pheromone both when leaving and when
returning to the nest [50].

6In the ACO literature this is often called differential path length effect.

11

higher level of pheromone on the short branch biases their decision in its favor.7

Therefore, pheromone starts to accumulate faster on the short branch which will
eventually be used by the great majority of the ants.

It should be clear by now how real ants have inspired AS and later algorithms:
the double bridge was substituted by a graph and pheromone trails by artificial
pheromone trails. Also, because we wanted artificial ants to solve problems more
complicate than those solved by real ants, we gave artificial ants some extra ca-
pacities, like a memory (used to implement constraints and to allow the ants to
retrace their path back to the nest without errors) and the capacity of depositing
a quantity of pheromone proportional to the quality of the solution produced (a
similar behavior is observed also in some real ants species in which the quantity of
pheromone deposited while returning to the nest from a food source is proportional
to the quality of the food source found [3]).

In the next section we will see how, starting from AS, new algorithms have been
proposed that, although retaining some of the original biological inspiration, are
less and less biologically inspired and more and more motivated by the need of
making ACO algorithms competitive with or improve over state-of-the-art algo-
rithms. Nevertheless, many aspects of the original Ant System remain: the need
for a colony, the role of autocatalysis, the cooperative behavior mediated by artifi-
cial pheromone trails, the probabilistic construction of solutions biased by artificial
pheromone trails and local heuristic information, the pheromone updating guided
by solution quality, and the evaporation of pheromone trail, are present in all ACO
algorithms. It is interesting to note that there is one well known algorithm that,
although making use in some way of the ant foraging metaphor, cannot be consid-
ered an instance of the Ant Colony Optimization metaheuristic. This is HAS-QAP,
proposed in [46], where pheromone trails are not used to guide the solution con-
struction phase; on the contrary, they are used to guide modifications of complete
solutions in a local search style. This algorithm belong nevertheless to ant algo-
rithms, a new class of algorithms inspired by a number of different behaviors of
social insects. Ant algorithms are receiving increasing attention in the scientific
community (see for example [8, 9, 11, 30]) as a promising novel approach to dis-
tributed control and optimization.

4.2 Historical development

As we said, AS was the first example of an ACO algorithm to be proposed in the
literature. In fact, AS was originally a set of three algorithms called ant-cycle,

7A process like this, in which a decision taken at time t increases the probability of making the
same decision at time T > t is said to be an autocatalytic process. Autocatalytic processes exploit
positive feedback.

12

ant-density, and ant-quantity. These three algorithms were proposed in Dorigo’s
doctoral dissertation [29] and first appeared in a technical report [37, 36] that was
published a few years later in the IEEE Transactions on Systems, Man, and Cyber-
netics [38]. Another early publication is [16].

While in ant-density and ant-quantity the ants updated the pheromone directly
after a move from a city to an adjacent one, in ant-cycle the pheromone update was
only done after all the ants had constructed the tours and the amount of pheromone
deposited by each ant was set to be a function of the tour quality. Because ant-cycle
performed better than the other two variants, it was later called simply Ant System
(and in fact, it is the algorithm that we will present in the following subsection),
while the other two algorithms were no longer studied.

The major merit of AS, whose computational results were promising but not
competitive with other more established approaches, was to stimulate a number
of researchers, mostly in Europe, to develop extensions and improvements of its
basic ideas so to produce more performing, and often state-of-the-art, algorithms.
It is following the successes of this collective undertaking that recently Dorigo
and Di Caro [31] made the synthesis effort that took to the definition of the ACO
metaheuristic presented in this chapter (see also [32]). In other words, the ACO
metaheuristic was defined a posteriori with the goal of providing a common char-
acterization of a new class of algorithms and a reference framework for the design
of new instances of ACO algorithms.

4.2.1 The first ACO algorithm: Ant System and the TSP

The traveling salesman problem (TSP) is a paradigmatic NP-hard combinatorial
optimization problem which has attracted an enormous amount of research effort
[55, 58, 74]. The TSP is a very important problem also in the context of Ant Colony
Optimization because it is the problem to which the original AS was first applied
[36, 29, 38], and it has later often been used as a benchmark to test new ideas and
algorithmic variants.

In AS each ant is initially put on a randomly chosen city and has a memory which
stores the partial solution it has constructed so far (initially the memory contains
only the start city). Starting from its start city, an ant iteratively moves from city to
city. When being at a city i, an ant k chooses to go to a still unvisited city j with a
probability given by

pk
ij(t) =

[τij(t)]α · [ηij]β∑
l∈N k

i
[τil(t)]α · [ηil]β

if j ∈ N k
i (1)

where ηij = 1/dij is a priori available heuristic information, α and β are two pa-
rameters which determine the relative influence of pheromone trail and heuristic

13

information, and N k
i is the feasible neighborhood of ant k, that is, the set of cities

which ant k has not yet visited. Parameters α and β have the following influence
on the algorithm behavior. If α = 0, the selection probabilities are proportional to
[ηij]β and the closest cities will more likely be selected: in this case AS corresponds
to a classical stochastic greedy algorithm (with multiple starting points since ants
are initially randomly distributed on the cities). If β = 0, only pheromone ampli-
fication is at work: this will lead to the rapid emergence of a stagnation situation
with the corresponding generation of tours which, in general, are strongly subop-
timal [29]. (Search stagnation is defined in [38] as the situation where all the ants
follow the same path and construct the same solution.)

The solution construction ends after each ant has completed a tour, that is, after
each ant has constructed a sequence of length n. Next, the pheromone trails are up-
dated. In AS this is done by first lowering the pheromone trails by a constant factor
(this is pheromone evaporation) and then allowing each ant to deposit pheromone
on the arcs that belong to its tour:

τij(t + 1) = (1− ρ) · τij(t) +
m∑

k=1

∆τk
ij(t) ∀(i, j) (2)

where 0 < ρ ≤ 1 is the pheromone trail evaporation rate and m is the number of
ants. The parameter ρ is used to avoid unlimited accumulation of the pheromone
trails and enables the algorithm to “forget” previously done bad decisions. On arcs
which are not chosen by the ants, the associated pheromone strength will decrease
exponentially with the number of iterations. ∆τk

ij(t) is the amount of pheromone
ant k deposits on the arcs; it is defined as

∆τk
ij(t) =




1/Lk(t) if arc (i, j) is used by ant k

0 otherwise
(3)

where Lk(t) is the length of the kth ant’s tour. By Equation 3, the shorter the ant’s
tour is, the more pheromone is received by arcs belonging to the tour.8 In general,
arcs which are used by many ants and which are contained in shorter tours will
receive more pheromone and therefore are also more likely to be chosen in future
iterations of the algorithm.

8Note that when applied to symmetric TSPs the arcs are considered to be bidirectional and arcs
(i, j) and (j, i) are both updated. This is different for the ATSP, where arcs are directed; an ant
crossing arc (i, j) only will update this arc and not the arc (j, i).

14

4.2.2 Ant System and its extensions

As we said, AS was not competitive with state-of-the-art algorithms for TSP. Re-
searchers then started to extend it to try to improve its performance.

A first improvement, called the elitist strategy, was introduced in [29, 38]. It
consists in giving the best tour since the start of the algorithm (called T gb, where
gb stays for global-best) a strong additional weight. In practice, each time the
pheromone trails are updated, those belonging to the edges of the global best tour
get an additional amount of pheromone. For these edges Equation 3 becomes:

∆τ gb
ij (t) =




e/Lgb(t) if arc (i, j) ∈ T gb

0 otherwise
(3a)

The arcs of T gb are therefore reinforced with a quantity of e · 1/Lgb, where Lgb

is the length of T gb and e is a positive integer. Note that this type of pheromone
update is a first example of daemon action as described in Section 3.3.

Other improvements, described below, were the rank-based version of Ant Sys-
tem (ASrank), MAX–MIN Ant System (MMAS), and Ant Colony System
(ACS). ASrank [14] is in a sense an extension of the elitist strategy: it sorts the ants
according to the lengths of the tours they generated and, after each tour construc-
tion phase, only the (w−1) best ants and the global-best ant are allowed to deposit
pheromone. The rth best ant of the colony contributes to the pheromone update
with a weight given by max{0, w − r} while the global-best tour reinforces the
pheromone trails with weight w. Equation 2 becomes therefore:

τij(t + 1) = (1− ρ) · τij(t) +
w−1∑
r=1

(w − r) ·∆τ r
ij(t) + w ·∆τ gb

ij (t) (2a)

where ∆τ r
ij(t) = 1/Lr(t) and ∆τ gb

ij (t) = 1/Lgb.
ACS [42, 34, 33] improves over AS by increasing the importance of exploitation

of information collected by previous ants with respect to exploration of the search
space.9 This is achieved via two mechanisms. First, a strong elitist strategy is used
to update pheromone trails. Second, ants choose the next city to move to using a
so-called pseudo-random proportional rule [34]: with probability q0 they move to
the city j for which the product between pheromone trail and heuristic information

9ACS was an offspring of Ant-Q [41], an algorithm intended to create a link between reinforce-
ment learning [87] and Ant Colony Optimization. Computational experiments have shown that some
aspects of Ant-Q, in particular the pheromone update rule, could be strongly simplified without af-
fecting performance. It is for this reason that Ant-Q was abandoned in favor of the simpler and
equally good ACS.

15

is maximum, that is, j = arg maxj∈N k
i
{τij(t) · ηβ

ij}, while with probability 1− q0

they operate a biased exploration in which the probability pk
ij(t) is the same as

in AS (see Equation 1). The value q0 is a parameter: when it is set to a value
close to 1, as it is the case in most ACS applications, exploitation is favored over
exploration. Obviously, when q0 = 0 the probabilistic decision rule becomes the
same as in AS.

As we said, pheromone updates are performed using a strong elitist strategy:
only the ant that has produced the best solution is allowed to update pheromone
trails, according to a pheromone trail update rule similar to that used in AS:

τij(t + 1) = (1− ρ) · τij(t) + ρ ·∆τ best
ij (t) (4)

The best ant can be the iteration-best ant, that is, the best in the current iteration,
or the global-best ant, that is, the ant that made the best tour from the start of the
trial.

Finally, ACS differs form previous ACO algorithms also because ants update the
pheromone trails while building solutions (like it was done in ant-quantity and in
ant-density. In practice ACS ants “eat” some of the pheromone trail on the edges
they visit. This has the effect of decreasing the probability that a same path is
used by all the ants (i.e., it favors exploration, counterbalancing this way the other
two above-mentioned modifications that strongly favor exploitation of the collected
knowledge about the problem). ACS has been made more performing also by the
addition of local search routines that take the solution generated by ants to their
local optimum just before the pheromone update.
MMAS [82, 84, 85] introduces upper and lower bounds to the values of the

pheromone trails, as well as a different initialization of their values. In practice,
in MMAS the allowed range of the pheromone trail strength is limited to the
interval [τmin, τmax], that is, τmin ≤ τij ≤ τmax ∀τij , and the pheromone trails are
initialized to the upper trail limit, which causes a higher exploration at the start of
the algorithm. Also, like in ACS, inMMAS only the best ant (the global-best or
the iteration-best ant) is allowed to add pheromone after each algorithm iteration.
Computational results have shown that best results are obtained when pheromone
updates are performed using the global-best solution with increasing frequency
during the algorithm execution. Similar to ACS, alsoMMAS often exploits local
search to improve its performance.

4.2.3 Applications to dynamic problems

The application of ACO algorithms to dynamic problems, that is, problems whose
characteristics change while being solved, is the most recent major development in

16

the field. The first such application [77] concerned routing in circuit-switched net-
works (e.g., classical telephone networks). The proposed algorithm, called ABC,
was demonstrated on a simulated version of the British Telecom network. The
main merit of ABC was to stimulate the interest of ACO researchers in dynamic
problems. In fact, only rather limited comparisons were made between ABC and
state-of-the-art algorithms for the same problem so that it is not possible to judge
on the quality of the results obtained.

A very successful application of ACO to dynamic problems is the AntNet algo-
rithm, proposed by Di Caro and Dorigo [23, 25, 27, 24] and discussed in Section
5. AntNet was applied to routing in packet-switched networks (e.g., the Internet).
It contains a number of innovations with respect to AS and it was experimentally
shown to outperform a whole set of state-of-the-art algorithms on numerous bench-
mark problems.

5 Examples of applications

The versatility and the practical use of the ACO metaheuristic for the solution of
combinatorial optimization problems is best illustrated via example applications to
a number of different problems.

The ACO application to the TSP has already been presented in the previous
section. Here, we additionally discuss applications to threeNP-hard optimization
problems, the single machine total weighted tardiness problem (SMTWTP), the
generalized assignment problem (GAP), and the set covering problem (SCP). We
have chosen these problems to make the application examples as comprehensive
as possible with respect to different ways of representing solutions. While the
TSP and the SMTWTP are permutation problems, that is, solutions are represented
as permutations of solution components, solutions in the GAP are assignments of
tasks to agents and in the SCP a solution is represented as a subset of the available
solution components.

Applications of ACO to dynamic problems focus mainly on routing in data net-
works. As an example we present AntNet [25], a very successful algorithm for
packet-switched networks like the Internet.

Example 1: The single machine total weighted tardiness scheduling
problem (SMTWTP)

In the SMTWTP n jobs have to be processed sequentially without interruption on
a single machine. Each job has a processing time pj , a weight wj , and a due date
dj associated and all jobs are available for processing at time zero. The tardiness

17

of job j is defined as Tj = max{0, Cj − dj}, where Cj is its completion time in
the current job sequence. The goal in the SMTWTP is to find a job sequence which
minimizes the sum of the weighted tardiness given by

∑n
i=1 wi · Ti.

For the ACO application to the SMTWTP, the set of components C is the set
of all jobs. As in the TSP case, the states of the problem are all possible partial
sequences. In the SMTWTP case we do not have explicit costs associated with the
connections because the objective function contribution of each job depends on the
partial solution constructed so far.

The SMTWTP was attacked in [21] using ACS (ACS-SMTWTP). In ACS-
SMTWTP, each ant starts with an empty sequence and then iteratively appends
an unscheduled job to the partial sequence constructed so far. Each ant chooses
the next job using the pseudo-random-proportional action choice rule, where the
at each step the feasible neighborhood N k

i of ant k is formed by the still unsched-
uled jobs. Pheromone trails are defined as follows: τij refers to the desirabil-
ity of scheduling job j at position i. This definition of the pheromone trails is,
in fact, used in most ACO application to scheduling problems [2, 21, 66, 80].
Concerning the heuristic information, in [21] the use of three priority rules al-
lowed to define three different types of heuristic information for the SMTWTP.
The investigated priority rules were: (i) the earliest due date rule (EDD), which
puts the jobs in non-decreasing order of the due dates dj , (ii) the modified due
date rule (MDD) which puts the jobs in non-decreasing order of the modified due
dates given by mddj = max{C + pj , dj} [2], where C is the sum of the process-
ing times of the already sequenced jobs, and (iii) the apparent urgency rule (AU)
which puts the jobs in non-decreasing order of the apparent urgency [70], given
by auj = (wj/pj) · exp(−(max{dj − Cj , 0})/kp), where k is a parameter of the
priority rule. In each case, the heuristic information was defined as ηij = 1/hj ,
where hj is either dj , mddj , or auj , depending on the priority rule used.

The global and the local pheromone update is done as in the standard ACS as
described in Section 4.2, where in the global pheromone update T gb is the total
weighted tardiness of the global best solution.

In [21], ACS-SMTWTP was combined with a powerful local search algorithm.
The final ACS algorithm was tested on a benchmark set available from ORLIB
at http://www.ms.ic.ac.uk/info.html. Within the computation time
limits given10 ACS reached a very good performance and could find in each single
run the optimal or best known solutions on all instances of the benchmark set. For
more details on the computational results we refer to [21].

10The maximum time for the largest instances was 20 min on a 450MHz Pentium III PC with 256
MB RAM. Programs were written in C++ and the PC was run under Red Hat Linux 6.1.

18

Example 2: The generalized assignment problem (GAP)

In the GAP a set of tasks I, i = 1, . . . , n has to be assigned to a set of agents
J , j = 1, . . . , m. Each agent j has only a limited capacity aj and each task i
consumes, when assigned to agent j, a quantity bij of the agent’s capacity. Also,
the cost dij of assigning task i to agent j is given. The objective then is to find a
feasible task assignment with minimal cost.

Let yij be one if task i is assigned to agent j and zero otherwise. Then the GAP
can formally be defined as

min f(y) =
m∑

j=1

n∑
i=1

dij · yij (5)

subject to
n∑

i=1

bij · yij ≤ aj j = 1, . . . , m (6)

n∑
j=1

yij = 1 i = 1, . . . , n (7)

yij ∈ {0, 1} i, j = 1, . . . , n (8)

The constraints 6 implement the limited resource capacity of the agents, while
constraints 7 and 8 impose that each task is assigned to exactly one agent and that
a task cannot be split among several agents.

The GAP can easily be cast into the framework of the ACO metaheuristic. The
problem can be represented by a graph in which the set of components comprises
the set of tasks and agents, that is C = I ∪ J and the set of connections fully
connect the graph. Each assignment, which consists of n couplings (i, j) of tasks
and agents, corresponds to an ant’s walk on this graph. Such a walk has to observe
the constraints 7 and 8 to obtain an assignment. One particular way of generating
such an assignment is by an ant’s walk which iteratively switches from task nodes
(nodes in the set J) to agent nodes (nodes in the set I) without repeating any task
node but using possibly several times an agent node (several tasks may be assigned
to a same agent).

At each step of the construction process, an ant has to make one of the following
two basic decisions [19]: (i) it has to decide which task to assign next and (ii) it has
to decide to which agent a chosen task should be assigned. Pheromone trail and
heuristic information can be associated with both tasks. With respect to the first
step the pheromone information can be used to learn an appropriate assignment
order of the tasks, that is τij gives the desirability of assigning task j directly after

19

task i, while the pheromone information in the second step is associated with the
desirability of assigning a task to a specific agent.

For simplicity let us consider an approach in which the tasks are assigned in a
random order. Then, at each step a task has to be assigned to an agent. Intuitively,
it is better to assign tasks to agents such that small assignment costs are incurred
and that the agent needs only a relatively small amount of its available resource to
perform the task. Hence, one possible heuristic information is ηij = aj/dijbij and
a probabilistic selection of the assignments can follow the AS probabilistic rule
(Equation 1) or the pseudo-random proportional rule of ACS. Yet, a complication
in the construction process is that the GAP involves resource capacity constraints
and, in fact, for the GAP no guarantee is given that an ant will construct a feasible
solution which obeys the resource constraints given by Equation 6. In fact, to
have a bias towards generating feasible solutions, the resource constraints should
be taken into account in the definition of N k

i , the feasible neighborhood of ant k.
For the GAP, we define N k

i to consist of all those agents to which the task i can
be assigned without violating the agents’ resource capacity. If no agent can meet
the task’s resource requirement, we are forced to build an infeasible solution and
in this case we simply can choose N k

i as the set of all agents. Infeasibilites can
then be handled, for example, by assigning penalties proportional to the amount of
resource violations.

A first application of MAX–MIN Ant System (MMAS) [85], to the GAP
was presented in [73]. The approach shows some particularities, like the use of a
single ant and the lack of any heuristic information. The infeasibility of solutions
is only treated in the pheromone update: the amount of pheromone deposited by
an ant is set to a high value if the solution it generated is feasible, to a low value
if it is infeasible. These values are constants independent of the solution quality.
Additionally,MMAS was coupled with a local search based on tabu search and
ejection chain elements [49] and it obtained very good performance on benchmark
instances available at ORLIB.

Example 3: The set covering problem (SCP)

In the set covering problem (SCP) we are given a m×n matrix A = (aij) in which
all the matrix elements are either zero or one. Additionally, each column is given
a non-negative cost bj . We say that a column j covers a row i if aij = 1. The goal
in the SCP is to choose a subset of the columns of minimal weight which covers
every row. Let J denote a subset of the columns and yj is a binary variable which
is one, if j ∈ J , and zero otherwise. The SCP can be defined formally as follows.

20

min f(y) =
n∑

j=1

bj · yj (9)

subject to
n∑

j=1

aij · yj ≥ 1 i = 1, . . . , m (10)

yj ∈ {0, 1} j = 1, . . . , n (11)

The constraints 10 enforce that each row is covered by at least one column.
ACO can be applied in a very straightforward way to the SCP. The columns are

chosen as the solution components and have associated a cost and a pheromone
trail. The Ω constraints say that each column can be visited by an ant once and
only once and that a final solution has to cover all rows. A walk of an ant over the
graph representation corresponds to the iterative addition of columns to the partial
solution obtained so far. Each ant starts with an empty solution and adds columns
until a cover is completed. A pheromone trail τi and a heuristic information ηi are
associated to each column i a. A column to be added is chosen with probability

pk
i (t) =

[τi(t)] · [ηi]β∑
l∈N k [τl(t)] · [ηl]β

if i ∈ N k (12)

where N k is the feasible neighborhood of ant k which consists of all columns
which cover at least one still uncovered row. The heuristic information ηi can be
chosen in several different ways. For example, a simple static information could
be used, taking into account only the column cost: ηi = 1/bi. A more sophisticate
approach would be to consider the total number of rows di covered by a column
i and to set ηi = di/bi. The heuristic information could also be made dependent
on the partial solution yk of an ant k. In this case, it can be defined as ηi = ei/bi,
where ei is the so-called cover value, that is, the number of additional rows covered
when adding column i to the current partial solution. In other words, the heuristic
information measures the unit cost of covering one additional row.

An ant ends the solution construction when all rows are covered. In a post-
optimization step, an ant can remove redundant columns—columns that only cover
rows which are also covered by a subset of other columns in the final solution—or
apply some additional local search to improve solutions. The pheromone update
can be done again in a standard way like it has already been described in the previ-
ous sections.

When applying ACO to the SCP we have two main differences with the previ-
ously presented applications: (i) pheromone trails are associated only to compo-
nents and, (ii) the length of the ant’s walks (corresponding to the lengths of the

21

sequences) may differ among the ants and, hence, the solution construction only
ends when all the ants have terminated their corresponding walks.

There exist already some first approaches applying ACO to the SCP. In [1],
ACO has been used only as a construction algorithm and the approach has only
been tested on some small SCP instances. A more recent article [53] applies Ant
System to the SCP and uses techniques to remove redundant columns and local
search to improve solutions. Good results are obtained on a large set of benchmark
instances taken from ORLIB, but the performance of Ant System could not fully
reach that of the best performing algorithms for the SCP.

Example 4: AntNet for network routing applications

Given a graph representing a telecommunications network, the problem solved by
AntNet is to find the minimum cost path between each pair of nodes of the graph.
It is important to note that, although finding a minimum cost path on a graph is an
easy problem (it can be efficiently solved with algorithms with polynomial worst
case complexity [5]), it becomes extremely difficult when the costs on the edges
are time-varying stochastic variables. This is the case of routing in packet-switched
networks, the target application for AntNet.

Here we briefly describe a simplified version of AntNet (the interested reader
should refer to [25], where the AntNet approach to routing is explained and evalu-
ated in detail). As we said, in AntNet each ant searches for a minimum cost path
between a given pair of nodes of the network. To this goal, ants are launched from
each network node towards randomly selected destination nodes. Each ant has a
source node s and a destination node d, and moves from s to d hopping from one
node to the next till node d is reached. When ant k is in node i, it chooses the next
node j to move to according to a probabilistic decision rule which is a function
of the ant’s memory and of local pheromone and heuristic information (very much
like to what happened, for example, in AS).

Differently from AS, where pheromone trails are associated to edges, in AntNet
pheromone trails are associated to arc-destination pairs. That is, each directed arc
(i, j) has n − 1 trail values τijd ∈ [0, 1] associated, where n is the number of
nodes in the graph associated to the routing problem; in general, τijd �= τjid. In
other words, there is one trail value τijd for each possible destination node d an
ant located in node i can have. Each arc has also associated an heuristic value
ηij ∈ [0, 1] independent of the final destination. The heuristic values can be set
for example to the values ηij = 1− qij/

∑
l∈Ni

qil, where qij is the length (in bits
waiting to be sent) of the queue of the link connecting node i with its neighbor j:
links with a shorter queue have a higher heuristic value.

In AntNet, as well as in most other implementations of ACO algorithms for

22

routing problems [77, 88], the daemon component (see Figure 5) is not present.
Ants choose their way probabilistically, using as probability a functional com-

position of the local pheromone trails τijd and of the heuristic values ηij . While
building the path to their destinations, ants move using the same link queues as data
and experience the same delays as data packets. Therefore, the time Tsd elapsed
while moving from the source node s to the destination node d can be used as a
measure of the quality of the path they built. The overall quality of a path is evalu-
ated by an heuristic function of the trip time Tsd and of a local adaptive statistical
model maintained in each node. In fact, paths need to be evaluated relative to the
network status because a trip time T judged of low quality under low congestion
conditions could be an excellent one under high traffic load. Once the generic ant
k has completed a path, it deposits on the visited nodes an amount of pheromone
∆τk(t) proportional to the quality of the path it built. To deposit pheromone, after
reaching its destination node, the ant moves back to its source node along the same
path but backward and using high priority queues, to allow a fast propagation of
the collected information. The pheromone trail intensity of each arc lij the ant used
while it was moving from s to d is increased as follows: τijd(t)← τijd(t)+∆τk(t).
After the pheromone trail on the visited arcs has been updated, the pheromone
value of all the outgoing connections of the same node i, relative to the destina-
tion d, evaporates in such a way that the pheromone values are normalized and can
continue to be usable as probabilities: τijd(t) ← τijd(t)/(1 + ∆τk(t)), ∀j ∈ Ni,
where Ni is the set of neighbors of node i.

AntNet was compared with many state-of-the-art algorithms on a large set of
benchmark problems under a variety of traffic conditions. It always compared
favorably with competing approaches and it was shown to be very robust with
respect to varying traffic conditions and parameter settings. More details on the
experimental results can be found in [25].

5.1 Applications of the ACO metaheuristic

ACO has recently raised a lot of interest in the scientific community. There are now
available numerous successful implementations of the ACO metaheuristic applied
to a wide range of different combinatorial optimization problems. These applica-
tions comprise two main application fields.

• NP-hard problems, for which the best known algorithms have exponential
time worst case complexity. For these problems very often ACO algorithms
are coupled with extra capabilities, as implemented by the daemon actions,
like a problem specific local optimizer which takes the ants’ solutions to a
local optimum.

23

Table 1. Current applications of ACO algorithms. Applications are listed by class of problems and in
chronological order.

Problem name Authors Algorithm name Year Main references

Traveling salesman Dorigo, Maniezzo & Colorni AS 1991 [29, 37, 38]
Gambardella & Dorigo Ant-Q 1995 [41]
Dorigo & Gambardella ACS & ACS-3-opt 1996 [33, 34, 42]
Stützle & Hoos MMAS 1997 [84, 82, 85]
Bullnheimer, Hartl & Strauss ASrank 1997 [14]
Cordón, et al. BWAS 2000 [18]

Quadratic assignment Maniezzo, Colorni & Dorigo AS-QAP 1994 [65]
Gambardella, Taillard & Dorigo HAS-QAPa 1997 [46]
Stützle & Hoos MMAS-QAP 1997 [79, 85]
Maniezzo ANTS-QAP 1998 [62]
Maniezzo & Colorni AS-QAPb 1999 [64]

Scheduling problems Colorni, Dorigo & Maniezzo AS-JSP 1994 [17]
Stützle AS-FSP 1997 [80]
Bauer et al. ACS-SMTTP 1999 [2]
den Besten, Stützle & Dorigo ACS-SMTWTP 1999 [21]
Merkle, Middendorf & Schmeck ACO-RCPS 2000 [66]

Vehicle routing Bullnheimer, Hartl & Strauss AS-VRP 1997 [12, 13]
Gambardella, Taillard & Agazzi HAS-VRP 1999 [45]

Connection-oriented Schoonderwoerd et al. ABC 1996 [77, 76]
network routing White, Pagurek & Oppacher ASGA 1998 [89]

Di Caro & Dorigo AntNet-FS 1998 [26]
Bonabeau et al. ABC-smart ants 1998 [10]

Connection-less Di Caro & Dorigo AntNet & AntNet-FA 1997 [23, 25, 28]
network routing Subramanian, Druschel & Chen Regular ants 1997 [86]

Heusse et al. CAF 1998 [54]
van der Put & Rothkrantz ABC-backward 1998 [88]

Sequential ordering Gambardella & Dorigo HAS-SOP 1997 [43, 44]

Graph coloring Costa & Hertz ANTCOL 1997 [19]

Shortest common Michel & Middendorf AS-SCS 1998 [67, 68]
supersequence

Frequency assignment Maniezzo & Carbonaro ANTS-FAP 1998 [63]

Generalized assignment Ramalhinho Lourenço & Serra MMAS-GAP 1998 [73]

Multiple knapsack Leguizamón & Michalewicz AS-MKP 1999 [59]

Optical networks routing Navarro Varela & Sinclair ACO-VWP 1999 [71]

Redundancy allocation Liang & Smith ACO-RAP 1999 [60]

Constraint satisfaction Solnon Ant-P-solver 2000 [78]

a HAS-QAP is an ant algorithm which does not follow all the aspects of the ACO metaheuristic.
b This is a variant of the original AS-QAP.

24

• Shortest path problems in which the properties of the problem’s graph rep-
resentation change over time concurrently with the optimization process that
has to adapt to the problem’s dynamics. In this case, the problem’s graph
can be physically available (like in networks problems), but its properties,
like the costs of components or of connections, can change over time. In this
case we conjecture that the use of ACO algorithms becomes more and more
appropriate as the variation rate of the costs increases and/or the knowledge
about the variation process diminishes.

These applications are summarized in Table 1. In some of these applications,
ACO algorithms have obtained world class performance, which is the case, for
example, for quadratic assignment [62, 85], sequential ordering [43, 44], vehicle
routing [45], scheduling [21, 66] or packet-switched network routing [25].

6 Discussion of application principles

Despite being a rather recent metaheuristic, ACO algorithms have already been
applied to a large number of different combinatorial optimization problems. Based
on this experience, we have identified some basic issues which play an important
role in several of these applications. These are discussed in the following.

6.1 Pheromone trails definition

A first, very important choice when applying ACO is the definition of the intended
meaning of the pheromone trails. Let us explain this issue with an example. When
applying ACO to the TSP, the standard interpretation of a pheromone trail τij , used
in all available ACO applications to the TSP, is that it refers to the desirability of
visiting city j directly after a city i. That is, it provides some information on the
desirability of the relative positioning of city i and j. Yet, another possibility, not
working so well in practice, would be to interpret τij as the desirability of visiting
city i as the jth city in a tour, that is, the desirability of the absolute positioning.
Differently, when applying ACO to the SMTWTP (see Section 5) better results are
obtained when using the absolute position interpretation of the pheromone trails,
where τij is the desirability of putting job j on the ith position [20]. This is intu-
itively due to the different role that permutations have in the two problems. In the
TSP, permutations are cyclic, that is, only the relative order of the solution compo-
nents is important and a permutation π = (1 2 . . . n) has the same tour length as
the permutation π′ = (n 1 2 . . . n− 1)—it represents the same tour. Therefore, a
relative position based pheromone trail is the appropriate choice. On the contrary,

25

in the SMTWTP (as well as in many other scheduling problems), π and π′ repre-
sent two different solutions with most probably very different costs. Hence, in the
SMTWTP the absolute position based pheromone trails are a better choice. Never-
theless, it should be noted that, in principle, both choices are possible, because any
solution of the search space can be generated with both representations.

The definition of the pheromone trails is crucial and a poor choice at this stage
of the algorithm design will probably result in poor performance. Fortunately, for
many problems the intuitive choice is also a very good one, as it was the case for the
previous example applications. Yet, sometimes the use of the pheromones can be
somewhat more involved, which is, for example, the case in the ACO application
to the shortest common supersequence problem [68].

6.2 Balancing exploration and exploitation

Any high performing metaheuristic algorithm has to achieve an appropriate bal-
ance between the exploitation of the search experience gathered so far and the
exploration of unvisited or relatively unexplored search space regions. In ACO
several ways exist of achieving such a balance, typically through the management
of the pheromone trails. In fact, the pheromone trails induce a probability distribu-
tion over the search space and determine which parts of the search space are effec-
tively sampled, that is, in which part of the search space the constructed solutions
are located with higher frequency. Note that, depending on the distribution of the
pheromone trails, the sampling distribution can vary from a uniform distribution
to a degenerate distribution which assigns a probability of one to a single solution
and zero probability to all the others. In fact, this latter situation corresponds to the
stagnation of the search as explained on page 13.

The simplest way to exploit the ants’ search experience is to make the pheromone
update a function of the solution quality achieved by each particular ant. Yet, this
bias alone is often too weak to obtain good performance, as was shown experimen-
tally on the TSP [82, 85]. Therefore, in many ACO algorithms (see Section 4) an
elitist strategy whereby the best solutions found during the search strongly con-
tribute to pheromone trail updating, was introduced.

A stronger exploitation of the “learned” pheromone trails can also be achieved
during solution construction by applying the pseudo-random proportional rule of
Ant Colony System, as explained in Section 4.2.2.

Search space exploration is achieved in ACO primarily by the ants’ randomized
solution construction. Let us consider for a moment an ACO algorithm that does
not use heuristic information (this can be easily achieved by setting β = 0). In
this case, the pheromone updating activity of the ants will cause a shift from the
initial uniform sampling of the search space to a sampling focused on specific

26

search space regions. Hence, exploration of the search space will be higher in the
initial iterations of the algorithm, and will decrease as the computation goes on.
Obviously, attention must be put to avoid that a too strong focus on apparently
good regions of the search space causes the ACO algorithm to enter a stagnation
situation.

There are several ways to try to avoid such stagnation situations, maintaining
this way a reasonable level of exploration of the search space. For example, in
ACS the ants use a local pheromone update rule during the solution construction
to make the path they have taken less desirable for following ants and, thus, to
diversify search. MMAS introduces an explicit lower limit on the pheromone
trail level so that a minimal level of exploration is always guaranteed. MMAS
also uses a reinitialization of the pheromone trails, which is a way of enforcing
search space exploration. Experience has shown that pheromone trail reinitializa-
tion, when combined with appropriate choices for the pheromone trail update [85]
can be very useful to refocus the search on a different search space region.

Finally, an important, though somewhat neglected, role in the balance of ex-
ploration and exploitation is that of the parameters α and β, which determine the
relative influence of pheromone trail and heuristic information. Consider first the
influence of the parameter α. For α > 0, the larger the value of α the stronger the
exploitation of the search experience, for α = 0 the pheromone trails are not taken
into account at all, and for α < 0 the most probable choices done by the ants are
those that are less desirable from the point of view of pheromone trails. Hence,
varying α could be used to shift from exploration to exploitation and vice versa.
The parameter β determines the influence of the heuristic information in a similar
way. In fact, systematic variations of α and β could, similarly to what is done in
the strategic oscillations approach [48], be part of simple and useful strategies to
balance exploration and exploitation.

6.3 ACO and local search

In many applications to NP-hard combinatorial optimization problems like the
TSP, the QAP, or the VRP, ACO algorithms perform best when coupled with local
search algorithms (which is, in fact, a particular type of daemon action of the ACO
metaheuristic). Local search algorithms locally optimize the ants’ solutions and
these locally optimized solutions are used in the pheromone update.

The use of local search in ACO algorithms can be very interesting as the two
approaches are complementary. In fact, ACO algorithms perform a rather coarse-
grained search, and the solutions they produce can then be locally optimized by an
adequate local search algorithm. The coupling can therefore greatly improve the
quality of the solutions generated by the ants.

27

On the other side, generating initial solutions for local search algorithms is not an
easy task. For example, it has been shown that, for most problems, repeating local
searches from randomly generated initial solutions is not efficient (see for example
[55]). In practice, ants probabilistically combine solution components which are
part of the best locally optimal solutions found so far and generate new, promising
initial solutions for the local search. Experimentally, it has been found that such
a combination of a probabilistic, adaptive construction heuristic with local search
can yield excellent results [6, 34, 84].

Despite the fact that the use of local search algorithms has been shown to be
crucial for achieving best performance in many ACO applications, it should be
noted that ACO algorithms also show very good performance where local search
algorithms cannot be applied easily. One such example are the network routing
applications described in Section 5 or the shortest common supersequence problem
[68].

6.4 Importance of heuristic information

The possibility of using heuristic information to direct the ants’ probabilistic solu-
tion construction is important because it gives the possibility of exploiting problem
specific knowledge. This knowledge can be available a priori (this is the most fre-
quent situation in static problems) or at run-time (this is the typical situation in dy-
namic problems). In static problems, the heuristic information η is computed once
at initialization time and then is the same throughout the whole algorithm’s run. An
example is the use, in the TSP applications, of the length dij of the arc connecting
cities i and j to define the heuristic information ηij = 1/dij . Static heuristic infor-
mation has the advantage that (i) it is easy to compute, (ii) it has to be computed
only once at initialization time, and (iii) in each iteration of the ACO algorithm, a
table can be pre-computed with the values of τij(t) · ηβ

ij , which can result in a very
significant saving of computation time. In the dynamic case, the heuristic informa-
tion does depend on the partial solution constructed so far and therefore, has to be
computed at each step of an ant’s walk. This determines a higher computational
cost that may be compensated by the higher accurateness of the computed heuristic
values. For example, in the ACO application to the SMTWTP we found that the
use of dynamic heuristic information based on the MDD or the AU heuristics (see
Section 5) resulted in a better overall performance.

Another way of computing heuristic information was introduced in the ANTS
algorithm [61], where it is computed using lower bounds on the solution cost of
the completion of an ant’s partial solution. This method has the advantage that
it allows to exclude certain choices because they lead to solutions that are worse
than the best found so far. It allows therefore the combination of knowledge on

28

the calculation of lower bounds from mathematical programming with the ACO
paradigm. Nevertheless, a disadvantage is that the computation of the lower bounds
can be time consuming, especially because they have to be calculated at each single
step by each ant.

Finally, it should be noted that while the use of heuristic information is rather
important for a generic ACO algorithm, its importance is strongly reduced if lo-
cal search is used to improve solutions. This is due to the fact that local search
takes into account the cost information to improve solutions in a more direct way.
Luckily, this means that ACO algorithms can achieve, in combination with a local
search algorithm, very good performance also for problems for which it is difficult
to define a priori a very informative heuristic information.

6.5 Number of ants

Why to use a colony of ants instead of using one single ant? In fact, although
a single ant is capable of generating a solution, efficiency considerations suggest
that the use of a colony of ants is often a desirable choice. This is particularly
true for geographically distributed problems, because the differential length effect
exploited by ants in the solution of this class of problems can only arise in presence
of a colony of ants. It is also interesting to note that in routing problems ants solve
many shortest path problems in parallel (one between each pair of nodes) and a
colony of ants must be used for each of these problems.

On the other hand, in the case of combinatorial optimization problems the dif-
ferential length effect is not exploited and the use of m ants, m > 1, that build
r solutions each (i.e., the ACO algorithm is run for r iterations) could be equiva-
lent to the use of one ant that generates m · r solutions. Nevertheless, in this case
theoretical results on the convergence of some specific ACO algorithms, which
will be presented in Section 7, as well as experimental evidence suggest that ACO
algorithms perform better when the number m of ants is set to a value m > 1.

In general, the best value for m is a function of the particular ACO algorithm
chosen as well as of the class of problems being attacked, and most of the times it
must be set experimentally. Fortunately, ACO algorithms seem to be rather robust
to the actual number of ants used.

6.6 Candidate lists

One possible difficulty encountered by ACO algorithms is when they are applied
to problems with big-sized neighborhood in the solution construction. In fact, an
ant that visits a state with a big-sized neighborhood has a huge number of possible
moves among which to choose. Possible problems are that the solution construc-

29

tion is significantly slowed down and that the probability that many ants visit the
same state is very small. Such a situation can occur, for example, in the ACO
application to large TSPs or large SCPs.

In such situations, the above-mentioned problem can be considerably reduced by
the use of candidate lists. Candidate lists comprise a small set of promising neigh-
bors of the current state. They are created using a priori available knowledge on
the problem, if available, or dynamically generated information. Their use allows
ACO algorithms to focus on the more interesting components, strongly reducing
the dimension of the search space.

As an example, consider the ACO application to the TSP. For the TSP it is known
that very often optimal solutions can be found within a surprisingly small subgraph
consisting of all the cities and of those edges that connect each city to only a few of
its nearest neighbors. For example, for the TSPLIB instance pr2392.tsp with
2392 cities an optimal solution can be found within a subgraph of the 8 nearest
neighbors [74]. This knowledge can be used for defining candidate lists, which
was first done in the context of ACO algorithms in [42]. There a candidate list
included for each city its cl nearest neighbors. During solution construction an ant
tries to choose the city to move to only among the cities in the candidate list. Only
if all these cities have already been visited, the ant can choose among the other
cities.

So far, in ACO algorithms the use of candidate lists or similar approaches is
still rather unexplored. Inspiration from other techniques like Tabu Search [49] or
GRASP [40], where strong use of candidate lists is made, could be useful for the
development of effective candidate list strategies for ACO.

7 Other developments

7.1 Proving convergence

The simplest stochastic optimization algorithm is random search. Besides simplic-
ity, random search has also the nice property that it guarantees that it will find,
sooner or later, the optimal solution to your problem. Unfortunately, it is very inef-
ficient. Stochastic optimization algorithms can be seen as ways of biasing random
search so to make it more efficient. Unfortunately, once a stochastic algorithm is
biased, it is no longer guaranteed that it will, at some point, find the optimal solu-
tion. In fact, the bias could simply rule out this possibility. It is therefore interesting
to have convergence proofs that assure you that this does not happen.

The problem of convergence to the optimal solution of a generic ACO algorithm
is open (and it will most probably remain so, given the generality of the ACO
metaheuristic). Nevertheless, it should be noted that in some cases (e.g., Stützle’s

30

MMAS [84]) we can be sure that the optimal solution does not become unreach-
able after the repetitive application of the algorithm. In fact, in the case ofMMAS
the bound on the minimum value of pheromone trails makes it impossible that the
probability of some moves becomes null, so that all solutions continue to remain
reachable during the algorithm run.

Gutjahr [52] has recently proved convergence to the optimal solution for a par-
ticular ACO algorithm he calls Graph-based Ant System (GBAS). GBAS is very
similar to AS: the only important difference between AS and GBAS is that GBAS
puts some additional constraints on how the pheromone values should be updated.
In fact, in GBAS updates are allowed only when an improving solution is found.
Gutjahr’s convergence proof states that, given a small ε > 0 and for fixed values
of some algorithm parameters, after a number of cycles t ≥ t0 the algorithm will
find the optimal solution with probability Pt ≥ 1− ε, where t0 = f(ε). This is an
important result, and may open up the door to further convergence results for other
instances of ACO algorithms.

Recently, Rubinstein [75] has introduced an algorithm called Cross-Entropy
(CE) method that, while being very similar to AS, seems to have some nice prop-
erties (like a limited number of parameters and the possibility of determining their
optimal value). It still has to be seen, however, whether the CE method will have
a performance similar to that of ACO algorithms, or if, as it is more reasonable
to expect, it will be necessary to renounce to its simplicity, which simplifies its
theoretical study, to obtain state-of-the-art performance.

7.2 Parallel implementations

The very nature of ACO algorithms lends them to be parallelized in the data or
population domains. In particular, many parallel models used in other population-
based algorithms can be easily adapted to the ACO structure. Most parallelization
strategies can be classified into fine-grained and coarse-grained strategies. Char-
acteristic of fine-grained parallelization is that very few individuals are assigned
to one processors and that frequent information exchange among the processors
takes place. On the contrary, in coarse grained approaches larger subpopulations
or even full populations are assigned to single processors and information exchange
is rather rare. We refer, for example, to [35] for a review.

Fine-grained parallelization schemes have been investigated with parallel ver-
sions of AS for the TSP on the Connection Machine CM-2 adopting the approach
of attributing a single processing unit to each ant [7]. Experimental results showed
that communication overhead can be a major problem with this approach on fine
grained parallel machines, since ants end up spending most of their time communi-
cating to other ants the modifications they did to pheromone trails. Similar negative

31

results have also been reported in [15].
As shown by several researches [7, 15, 57, 69, 81], coarse grained paralleliza-

tion schemes are much more promising for ACO. When applied to ACO, coarse
grained schemes run p subcolonies in parallel, where p is the number of avail-
able processors. Information among the subcolonies is exchanged at certain inter-
vals. For example, in the Partially Asynchronous Parallel Implementation (PAPI)
of Bullnheimer, Kotsis and Strauss [15], for which high speed-up was observed,
the subcolonies exchange pheromone information every fixed number of iterations
done by each subcolony. Krüger, Merkle and Middendorf [57] investigated which
information should be exchanged between the m subcolonies and how this infor-
mation should be used to update the subcolony’s trail information. Their results
showed that it was better to exchange the best solutions found so far and to use
them in the pheromone update than to exchange complete pheromone matrices for
modifications of the pheromone matrix of a local subcolony. Middendorf, Reis-
chle, and Schmeck [69] investigate different ways of exchanging solutions among
m ant colonies. They consider an exchange of the global best solutions among all
colonies and local exchanges based on a virtual neighborhood among subcolonies
which corresponds to a directed ring. Their main observation was that the best
solutions, with respect to computing time and solution quality, were obtained by
limiting the information exchange to a local neighborhood of the colonies. In the
extreme case, no communication is done among the subcolonies, resulting in paral-
lel independent runs of an algorithm. This is the easiest way to parallelize random-
ized algorithms and can be very effective as has been shown with computational
results presented by Stützle [81].

8 Conclusions

The field of ACO algorithms is very lively, as testified for example by the suc-
cessful biannual workshop (ANTS – From Ant Colonies to Artificial Ants: A Se-
ries of International Workshops on Ant Algorithms; http://iridia.ulb.ac.be/˜ants/)
where researchers meet to discuss the properties of ACO and other ant algorithms
[8, 9, 30], both theoretically and experimentally.

From the theory side, researchers are trying either to extend the scope of existing
theoretical results [51], or to find principled ways to set parameters values [75].

From the experimental side, most of the current research is in the direction of
increasing the number of problems that are successfully solved by ACO algorithms,
including real-word, industrial applications [39].

Currently, the great majority of problems attacked by ACO are static and well-
defined combinatorial optimization problems, that is, problems for which all the

32

necessary information is available and does not change during problem solution.
For this kind of problems ACO algorithms must compete with very well estab-
lished algorithms, often specialized for the given problem. Also, very often the
role played by local search is extremely important to obtain good results (see for
example [44]). Although rather successful on these problems, we believe that ACO
algorithms will really evidentiate their strength when they will be systematically
applied to “ill-structured” problems for which it is not clear how to apply local
search, or to highly dynamic domains with only local information available. A first
step in this direction has already been done with the application to telecommuni-
cations networks routing, but more research is necessary.

9 Acknowledgments

Marco Dorigo acknowledges support from the Belgian FNRS, of which he is a Se-
nior Research Associate. This work was partially supported by the “Metaheuristics
Network”, a Research Training Network funded by the Improving Human Potential
programme of the CEC, grant HPRN-CT-1999-00106. The information provided
is the sole responsibility of the authors and does not reflect the Community’s opin-
ion. The Community is not responsible for any use that might be made of data
appearing in this publication.

References

[1] D.A. Alexandrov and Y.A. Kochetov. The behavior of the ant colony al-
gorithm for the set covering problem. In K. Inderfurth, G. Schwödiauer,
W. Domschke, F. Juhnke, P. Kleinschmidt, and G. Wäscher, editors, Oper-
ations Research Proceedings 1999, pages 255–260. Springer Verlag, 2000.

[2] A. Bauer, B. Bullnheimer, R. F. Hartl, and C. Strauss. An ant colony optimiza-
tion approach for the single machine total tardiness problem. In Proceedings
of the 1999 Congress on Evolutionary Computation (CEC’99), pages 1445–
1450. IEEE Press, Piscataway, NJ, 1999.

[3] R. Beckers, J.-L. Deneubourg, and S. Goss. Modulation of trail laying in
the ant Lasius niger (hymenoptera: Formicidae) and its role in the collective
selection of a food source. Journal of Insect Behavior, 6(6):751–759, 1993.

[4] R. Bellman, A. O. Esogbue, and I. Nabeshima. Mathematical Aspects of
Scheduling and Applications. Pergamon Press, New York, NJ, 1982.

33

[5] D. Bertsekas. Network Optimization: Continuous and Discrete Models.
Athena Scientific, Belmont, MA, 1998.

[6] K. D. Boese, A. B. Kahng, and S. Muddu. A new adaptive multi-start tech-
nique for combinatorial global optimization. Operations Research Letters,
16:101–113, 1994.

[7] M. Bolondi and M. Bondanza. Parallelizzazione di un algoritmo per la
risoluzione del problema del commesso viaggiatore. Master’s thesis, Dipar-
timento di Elettronica, Politecnico di Milano, Italy, 1993.

[8] E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence: From Nat-
ural to Artificial Systems. Oxford University Press, New York, NJ, 1999.

[9] E. Bonabeau, M. Dorigo, and G. Theraulaz. Inspiration for optimization from
social insect behavior. Nature, 406:39–42, 2000.

[10] E. Bonabeau, F. Henaux, S. Guérin, D. Snyers, P. Kuntz, and G. Theraulaz.
Routing in telecommunication networks with ”Smart” ant-like agents. In Pro-
ceedings of IATA’98, Second Int. Workshop on Intelligent Agents for Telecom-
munication Applications. Lectures Notes in AI vol. 1437, Springer Verlag,
1998.

[11] E. Bonabeau and G. Theraulaz. Swarm smarts. Scientific American,
282(3):54–61, 2000.

[12] B. Bullnheimer, R. F. Hartl, and C. Strauss. Applying the Ant System to
the vehicle routing problem. In S. Voß S. Martello, I. H. Osman, and
C. Roucairol, editors, Meta-Heuristics: Advances and Trends in Local Search
Paradigms for Optimization, pages 285–296. Kluwer Academic Publishers,
Dordrecht, 1999.

[13] B. Bullnheimer, R. F. Hartl, and C. Strauss. An improved ant system al-
gorithm for the vehicle routing problem. Annals of Operations Research,
89:319–328, 1999.

[14] B. Bullnheimer, R. F. Hartl, and C. Strauss. A new rank-based version of the
Ant System: A computational study. Central European Journal for Opera-
tions Research and Economics, 7(1):25–38, 1999.

[15] B. Bullnheimer, G. Kotsis, and C. Strauss. Parallelization strategies for the
Ant System. In R. De Leone, A. Murli, P. Pardalos, and G. Toraldo, edi-
tors, High Performance Algorithms and Software in Nonlinear Optimization,

34

volume 24 of Applied Optimization, pages 87–100. Kluwer Academic Pub-
lishers, Dordrecht, NL, 1998.

[16] A. Colorni, M. Dorigo, and V. Maniezzo. Distributed optimization by ant
colonies. In F. J. Varela and P. Bourgine, editors, Proceedings of the First Eu-
ropean Conference on Artificial Life, pages 134–142. MIT Press, Cambridge,
MA, 1992.

[17] A. Colorni, M. Dorigo, V. Maniezzo, and M. Trubian. Ant System for job-
shop scheduling. JORBEL - Belgian Journal of Operations Research, Statis-
tics and Computer Science, 34(1):39–53, 1994.

[18] O. Cordón, I. Fernández de Viana, F. Herrera, and L. Moreno. A new ACO
model integrating evolutionary computation concepts: The best-worst ant
system. In M. Dorigo, M. Middendorf, and T. Stützle, editors, Abstract pro-
ceedings of ANTS2000 – From Ant Colonies to Artificial Ants: A Series of
International Workshops on Ant Algorithms, pages 22–29. Université Libre
de Bruxelles, 2000.

[19] D. Costa and A. Hertz. Ants can colour graphs. Journal of the Operational
Research Society, 48:295–305, 1997.

[20] M. den Besten. Ants for the single machine total weighted tardiness problem.
Master’s thesis, University of Amsterdam, 2000.

[21] M. den Besten, T. Stützle, and M. Dorigo. Ant colony optimization for the
total weighted tardiness problem. In M. Schoenauer, K. Deb, G. Rudolph,
X. Yao, E. Lutton, J. J. Merelo, and H.S. Schwefel, editors, Proceedings of
PPSN-VI, Sixth International Conference on Parallel Problem Solving from
Nature, volume 1917 of Lecture Notes in Computer Science, pages 611–620.
Springer Verlag, Berlin, Germany, 2000.

[22] J.-L. Deneubourg, S. Aron, S. Goss, and J.-M. Pasteels. The self-organizing
exploratory pattern of the Argentine ant. Journal of Insect Behavior, 3:159–
168, 1990.

[23] G. Di Caro and M. Dorigo. AntNet: A mobile agents approach to adaptive
routing. Technical Report IRIDIA/97-12, IRIDIA, Université Libre de Brux-
elles, Belgium, 1997.

[24] G. Di Caro and M. Dorigo. Ant colonies for adaptive routing in packet-
switched communications networks. In A. E. Eiben, T. Bäck, M. Schoenauer,

35

and H.-P. Schwefel, editors, Proceedings of PPSN-V, Fifth International Con-
ference on Parallel Problem Solving from Nature, volume 1498 of Lecture
Notes in Computer Science, pages 673–682. Springer Verlag, Berlin, Ger-
many, 1998.

[25] G. Di Caro and M. Dorigo. AntNet: Distributed stigmergetic control for com-
munications networks. Journal of Artificial Intelligence Research, 9:317–
365, 1998.

[26] G. Di Caro and M. Dorigo. Extending AntNet for best-effort Quality-of-
Service routing. Unpublished presentation at ANTS’98 - From Ant Colonies
to Artificial Ants: First International Workshop on Ant Colony Optimization
http://iridia.ulb.ac.be/ants98/ants98.html, October 15-16 1998.

[27] G. Di Caro and M. Dorigo. Mobile agents for adaptive routing. In H. El-
Rewini, editor, Proceedings of the 31st International Conference on Sys-
tem Sciences (HICSS-31), pages 74–83. IEEE Computer Society Press, Los
Alamitos, CA, 1998.

[28] G. Di Caro and M. Dorigo. Two ant colony algorithms for best-effort routing
in datagram networks. In Y. Pan, S. G. Akl, and K. Li, editors, Proceedings
of the Tenth IASTED International Conference on Parallel and Distributed
Computing and Systems (PDCS’98), pages 541–546. IASTED/ACTA Press,
Anheim, 1998.

[29] M. Dorigo. Optimization, Learning and Natural Algorithms (in Italian). PhD
thesis, Dipartimento di Elettronica, Politecnico di Milano, Italy, 1992. pp.
140.

[30] M. Dorigo, E. Bonabeau, and G. Theraulaz. Ant algorithms and stigmergy.
Future Generation Computer Systems, 16(8):851–871, 2000.

[31] M. Dorigo and G. Di Caro. The Ant Colony Optimization meta-heuristic.
In D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimization,
pages 11–32. McGraw Hill, London, UK, 1999.

[32] M. Dorigo, G. Di Caro, and L. M. Gambardella. Ant algorithms for discrete
optimization. Artificial Life, 5(2):137–172, 1999.

[33] M. Dorigo and L. M. Gambardella. Ant colonies for the traveling salesman
problem. BioSystems, 43:73–81, 1997.

36

[34] M. Dorigo and L. M. Gambardella. Ant Colony System: A cooperative learn-
ing approach to the traveling salesman problem. IEEE Transactions on Evo-
lutionary Computation, 1(1):53–66, 1997.

[35] M. Dorigo and V. Maniezzo. Parallel genetic algorithms: Introduction and
overview of current research. In J. Stenders, editor, Parallel Genetic Algo-
rithms: Theory and Applications, pages 5–42. IOS Press, Amsterdam, The
Netherlands, 1992.

[36] M. Dorigo, V. Maniezzo, and A. Colorni. The Ant System: An autocatalytic
optimizing process. Technical Report 91-016 Revised, Dipartimento di Elet-
tronica, Politecnico di Milano, Italy, 1991.

[37] M. Dorigo, V. Maniezzo, and A. Colorni. Positive feedback as a search strat-
egy. Technical Report 91-016, Dipartimento di Elettronica, Politecnico di
Milano, Italy, 1991.

[38] M. Dorigo, V. Maniezzo, and A. Colorni. The Ant System: Optimization by
a colony of cooperating agents. IEEE Transactions on Systems, Man, and
Cybernetics – Part B, 26(1):29–41, 1996.

[39] M. Dorigo, M. Middendorf, and T. Stützle, editors. Abstract proceedings of
ANTS2000 – From Ant Colonies to Artificial Ants: A Series of International
Workshops on Ant Algorithms. Université Libre de Bruxelles, 7–9 September
2000.

[40] T. A. Feo and M. G. C. Resende. Greedy randomized adaptive search proce-
dures. Journal of Global Optimization, 6:109–133, 1995.

[41] L. M. Gambardella and M. Dorigo. Ant-Q: A reinforcement learning ap-
proach to the traveling salesman problem. In A. Prieditis and S. Russell, edi-
tors, Proceedings of the Twelfth International Conference on Machine Learn-
ing (ML-95), pages 252–260. Morgan Kaufmann Publishers, Palo Alto, CA,
1995.

[42] L. M. Gambardella and M. Dorigo. Solving symmetric and asymmetric TSPs
by ant colonies. In Proceedings of the 1996 IEEE International Conference
on Evolutionary Computation (ICEC’96), pages 622–627. IEEE Press, Pis-
cataway, NJ, 1996.

[43] L. M. Gambardella and M. Dorigo. HAS-SOP: An hybrid Ant System for
the sequential ordering problem. Technical Report IDSIA-11-97, IDSIA,
Lugano, Switzerland, 1997.

37

[44] L. M. Gambardella and M. Dorigo. Ant Colony System hybridized with a
new local search for the sequential ordering problem. INFORMS Journal on
Computing, 12(3):237–255, 2000.

[45] L. M. Gambardella, È. D. Taillard, and G. Agazzi. MACS-VRPTW: A mul-
tiple ant colony system for vehicle routing problems with time windows. In
D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimization,
pages 63–76. McGraw Hill, London, UK, 1999.

[46] L. M. Gambardella, È. D. Taillard, and M. Dorigo. Ant colonies for the
quadratic assignment problem. Journal of the Operational Research Society,
50(2):167–176, 1999.

[47] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. Freeman, San Francisco, CA, 1979.

[48] F. Glover. Tabu search – part II. ORSA Journal on Computing, 2(1):4–32,
1990.

[49] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers,
Boston, MA, 1997.

[50] S. Goss, S. Aron, J. L. Deneubourg, and J. M. Pasteels. Self-organized short-
cuts in the Argentine ant. Naturwissenschaften, 76:579–581, 1989.

[51] W. J. Gutjahr. A generalized convergence result for the graph-based Ant
System metaheuristic. Technical Report 99-09, Department of Statistics and
Decision Support Systems, University of Vienna, Austria, 1999.

[52] W. J. Gutjahr. A graph-based Ant System and its convergence. Future Gen-
eration Computer Systems, 16(8):873–888, 2000.

[53] R. Hadji, M. Rahoual, E. Talbi, and V. Bachelet. Ant colonies for the set cov-
ering problem. In M. Dorigo, M. Middendorf, and T. Stützle, editors, Abstract
proceedings of ANTS2000 – From Ant Colonies to Artificial Ants: A Series of
International Workshops on Ant Algorithms, pages 63–66. Université Libre
de Bruxelles, 2000.

[54] M. Heusse, S. Guérin, D. Snyers, and P. Kuntz. Adaptive agent-driven routing
and load balancing in communication networks. Technical Report RR-98001-
IASC, Départment Intelligence Artificielle et Sciences Cognitives, ENST
Bretagne, 1998. Accepted for publication in the Journal of Complex Systems.

38

[55] D. S. Johnson and L. A. McGeoch. The travelling salesman problem: A case
study in local optimization. In E. H. L. Aarts and J. K. Lenstra, editors, Local
Search in Combinatorial Optimization, pages 215–310. John Wiley & Sons,
Chichester, 1997.

[56] M. Jünger, G. Reinelt, and S. Thienel. Provably good solutions for the trav-
eling salesman problem. Zeitschrift für Operations Research, 40:183–217,
1994.

[57] F. Krüger, D. Merkle, and M. Middendorf. Studies on a parallel ant system
for the BSP model. Unpublished manuscript.

[58] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys. The
Travelling Salesman Problem. John Wiley & Sons, Chichester, UK, 1985.

[59] G. Leguizamón and Z. Michalewicz. A new version of Ant System for subset
problems. In Proceedings of the 1999 Congress on Evolutionary Computation
(CEC’99), pages 1459–1464. IEEE Press, Piscataway, NJ, 1999.

[60] Y.-C. Liang and A. E. Smith. An Ant System approach to redundancy allo-
cation. In Proceedings of the 1999 Congress on Evolutionary Computation,
pages 1478–1484. IEEE Press, Piscataway, NJ, 1999.

[61] V. Maniezzo. Exact and approximate nondeterministic tree-search procedures
for the quadratic assignment problem. Technical Report CSR 98-1, Scienze
dell’Informazione, Universitá di Bologna, Sede di Cesena, Italy, 1998.

[62] V. Maniezzo. Exact and approximate nondeterministic tree-search procedures
for the quadratic assignment problem. INFORMS Journal on Computing,
11(4):358–369, 1999.

[63] V. Maniezzo and A. Carbonaro. An ANTS heuristic for the frequency as-
signment problem. Future Generation Computer Systems, 16(8):927 – 935,
2000.

[64] V. Maniezzo and A. Colorni. The Ant System applied to the quadratic as-
signment problem. IEEE Transactions on Data and Knowledge Engineering,
11(5):769–778, 1999.

[65] V. Maniezzo, A. Colorni, and M. Dorigo. The Ant System applied to the
quadratic assignment problem. Technical Report IRIDIA/94-28, IRIDIA,
Université Libre de Bruxelles, Belgium, 1994.

39

[66] D. Merkle, M. Middendorf, and H. Schmeck. Ant colony optimization
for resource-constrained project scheduling. In Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO-2000), pages 893–900.
Morgan Kaufmann Publishers, San Francisco, CA, 2000.

[67] R. Michel and M. Middendorf. An island model based Ant System with
lookahead for the shortest supersequence problem. In A. E. Eiben, T. Bäck,
M. Schoenauer, and H.-P. Schwefel, editors, Proceedings of PPSN-V, Fifth
International Conference on Parallel Problem Solving from Nature, volume
1498 of Lecture Notes in Computer Science, pages 692–701. Springer Verlag,
Berlin, Germany, 1998.

[68] R. Michel and M. Middendorf. An ACO algorithm for the shortest superse-
quence problem. In D. Corne, M. Dorigo, and F. Glover, editors, New Ideas
in Optimization, pages 51–61. McGraw Hill, London, UK, 1999.

[69] M. Middendorf, F. Reischle, and H. Schmeck. Information exchange in multi
colony ant algorithms. In J. Rolim, editor, Parallel and Distributed Com-
puting, Proceedings of the 15 IPDPS 2000 Workshops, Third Workshop on
Biologically Inspired Solutions to Parallel Processing Problems (BioSP3),
volume 1800 of Lecture Notes in Computer Science, pages 645–652. Springer
Verlag, Berlin, Germany, 2000.

[70] T. E. Morton, R. M. Rachamadugu, and A. Vepsalainen. Accurate my-
opic heuristics for tardiness scheduling. GSIA Working Paper 36-83-84,
Carnegie–Mellon University, PA, 1984.

[71] G. Navarro Varela and M. C. Sinclair. Ant colony optimisation for virtual-
wavelength-path routing and wavelength allocation. In Proceedings of the
1999 Congress on Evolutionary Computation (CEC’99), pages 1809–1816.
IEEE Press, Piscataway, NJ, 1999.

[72] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, Reading,
MA, 1994.

[73] H. Ramalhinho Lourenço and D. Serra. Adaptive approach heuristics for the
generalized assignment problem. Technical Report Technical Report Eco-
nomic Working Papers Series No.304, Universitat Pompeu Fabra, Dept. of
Economics and Management, Barcelona, Spain, 1998.

[74] G. Reinelt. The Traveling Salesman: Computational Solutions for TSP Appli-
cations, volume 840 of Lecture Notes in Computer Science. Springer Verlag,
Berlin, Germany, 1994.

40

[75] R. Y. Rubinstein. Combinatorial optimization via the simulated cross-entropy
method. In Encyclopedia of Management Sciences. 2000. in press.

[76] R. Schoonderwoerd, O. Holland, and J. Bruten. Ant-like agents for load
balancing in telecommunications networks. In Proceedings of the First In-
ternational Conference on Autonomous Agents, pages 209–216. ACM Press,
1997.

[77] R. Schoonderwoerd, O. Holland, J. Bruten, and L. Rothkrantz. Ant-
based load balancing in telecommunications networks. Adaptive Behavior,
5(2):169–207, 1996.

[78] C. Solnon. Solving permutation constraint satisfaction problems with arti-
ficial ants. In W. Horn, editor, Proceedings of the 14th European Confer-
ence on Artificial Intelligence, pages 118–122. IOS Press, Amsterdam, The
Netherlands, 2000.

[79] T. Stützle.MAX–MIN Ant System for the quadratic assignment problem.
Technical Report AIDA–97–4, FG Intellektik, FB Informatik, TU Darmstadt,
July 1997.

[80] T. Stützle. An ant approach to the flow shop problem. In Proceedings of the
6th European Congress on Intelligent Techniques & Soft Computing (EU-
FIT’98), volume 3, pages 1560–1564. Verlag Mainz, Aachen, 1998.

[81] T. Stützle. Parallelization strategies for ant colony optimization. In Agos-
ton E. Eiben, Thomas Bäck, Marc Schoenauer, and Hans-Paul Schwefel,
editors, Proceedings of PPSN-V, Fifth International Conference on Parallel
Problem Solving from Nature, volume 1498 of Lecture Notes in Computer
Science, pages 722–731. Springer Verlag, Berlin, Germany, 1998.

[82] T. Stützle. Local Search Algorithms for Combinatorial Problems: Analysis,
Improvements, and New Applications. Infix, Sankt Augustin, Germany, 1999.

[83] T. Stützle and M. Dorigo. ACO algorithms for the quadratic assignment prob-
lem. In D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimiza-
tion, pages 33–50. McGraw Hill, London, UK, 1999.

[84] T. Stützle and H. H. Hoos. TheMAX–MIN Ant System and local search
for the traveling salesman problem. In T. Bäck, Z. Michalewicz, and X. Yao,
editors, Proceedings of the 1997 IEEE International Conference on Evolu-
tionary Computation (ICEC’97), pages 309–314. IEEE Press, Piscataway,
NJ, 1997.

41

[85] T. Stützle and H. H. Hoos. MAX–MIN Ant System. Future Generation
Computer Systems, 16(8):889–914, 2000.

[86] D. Subramanian, P. Druschel, and J. Chen. Ants and reinforcement learn-
ing: A case study in routing in dynamic networks. In Proceedings of IJCAI-
97, International Joint Conference on Artificial Intelligence, pages 832–838.
Morgan Kaufmann, 1997.

[87] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT
Press, Cambridge, MA, 1998.

[88] R. van der Put. Routing in the faxfactory using mobile agents. Technical
Report R&D-SV-98-276, KPN Research, 1998.

[89] T. White, B. Pagurek, and F. Oppacher. Connection management using adap-
tive mobile agents. In H.R. Arabnia, editor, Proceedings of the International
Conference on Parallel and Distributed Processing Techniques and Applica-
tions (PDPTA’98), pages 802–809. CSREA Press, 1998.

[90] M. Yannakakis. Computational complexity. In E. H. L. Aarts and J. K.
Lenstra, editors, Local Search in Combinatorial Optimization, pages 19–55.
John Wiley & Sons, Chichester, 1997.

42

