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Abstract. The Probabilistic Traveling Salesman Problem (PTSP) is a
TSP problem in which each customer has a given probability of requiring
a visit. The goal is to find an a priori tour of minimal expected length over
all customers, with the strategy of visiting a random subset of customers
in the same order as they appear in the a priori tour.

We propose an ant based a priori tour construction heuristic, the proba-
bilistic Ant Colony System (pACS), which is derived from ACS, a similar
heuristic previously designed for the TSP problem. We show that pACS
finds better solutions than other tour construction heuristics for a wide
range of homogeneous customer probabilities. We also show that for high
customers probabilities ACS solutions are better than pACS solutions.

1 Introduction

Consider a routing problem through a set V of n customers. On any given
instance of the problem each customer i has a known position and a probability
pi of actually requiring a visit, independently of the other customers. Finding
a solution for this problem implies having a strategy to determine a tour for
each random subset S ⊆ V , in such a way as to minimize the expected tour
length. The most studied strategy is the a priori one. An a priori strategy has
two components: the a priori tour and the updating method. The a priori tour is
a tour visiting the complete set V of n customers; the updating method modifies
the a priori tour in order to have a particular tour for each subset of customers
S ⊆ V . A very simple example of updating method is the following: for every
subset of customers, visit them in the same order as they appear in the a priori
tour, skipping the customers that do not belong to the subset. The strategy
related to this method is called the ‘skipping strategy’. The problem of finding
an a priori tour of minimum expected length under the skipping strategy is
defined as the Probabilistic Traveling Salesman Problem (PTSP). This is an
NP-hard problem [3, 1], and was introduced in Jaillet’s PhD thesis [8].



The PTSP approach models applications in a delivery context where a set of
customers has to be visited on a regular (e.g., daily) basis, but all customers do
not always require a visit, and where re-optimizing vehicle routes from scratch
every day is infeasible. In this context the delivery man would follow a standard
route (i.e., an a priori tour), leaving out customers that on that day do not
require a visit. The standard route of least expected length corresponds to the
optimal PTSP solution.

In the literature there are a number of algorithmic and heuristic approaches
used to find suboptimal solutions for the PTSP. Heuristics using a nearest neigh-
bor criterion or savings criterion were implemented and tested by Jézéquel [9] and
by Rossi-Gavioli [11]. Later, Bertsimas-Jaillet-Odoni [3] and Bertsimas-Howell
[2] have further investigated some of the properties of the PTSP and have pro-
posed some heuristics for the PTSP. These include tour construction heuristics
(space filling curves and radial sort), and tour improvement heuristics (proba-
bilistic 2-opt edge interchange local search and probabilistic 1-shift local search).
More recently, Laporte-Louveaux-Mercure [10] have applied an integer L-shaped
method to the PTSP and have solved to optimality instances involving up to 50
vertices.

Most of the heuristics proposed are an adaptation of a TSP heuristic to the
PTSP, or even the original TSP heuristic, which in some cases gives good PTSP
solutions. No application to the PTSP of nature-inspired algorithms such as
ant colony optimization (ACO) [4] or genetic algorithms can be found in the
literature. This paper investigates the potentialities of ACO algorithms as tour
construction heuristics for the homogeneous PTSP, that is, for the PTSP where
customers have the same probability of requiring a visit.

In the remainder of the paper we first introduce the PTSP objective function
(section 2), then we describe the ACO algorithms which we tested (section 3),
and in section 4 we report the experimental results obtained. The concluding
section 5 summarizes the results obtained and indicates future directions for
research on the PTSP.

2 The PTSP objective function

Let us consider an instance of the PTSP. We have a completely connected graph
whose nodes form a set V = {i = 1, 2, ..., n} of customers. Each customer has a
probability pi of requiring a visit, independent of the others. A solution for this
instance is a tour λ over all nodes in V (an ‘a priori tour’), to which is associated
the expected length objective function

E[Lλ] =
∑

S⊆V

p(S)Lλ(S) . (1)

In the above expression, S is a subset of the set of nodes V , Lλ(S) is the distance
required to visit the customers in S (in the same order as they appear in the
a priori tour), and p(S) is the probability that all the customers in S require a



visit:
p(S) =

∏

i∈S

pi

∏

i∈V−S

(1− pi) . (2)

Jaillet [8] showed that the evaluation of the PTSP objective function (eq.(1))
can be done in O(n2). In fact, let us consider (without loss of generality) an a
priori tour λ = (1, 2, . . . , n); then its expected length is

E[Lλ] =

n
∑

i=1

n
∑

j=i+1

dijpipj

j−1
∏

k=i+1

(1− pk)+

n
∑

i=1

i−1
∑

j=1

dijpipj

n
∏

k=i+1

(1− pk)

j−1
∏

l=1

(1− pl) . (3)

This expression is derived by looking at the probability for each arc of the com-
plete graph to be used, that is, when the a priori tour is adapted by skip-
ping a set of customers which do not require a visit. For instance, an arc (i, j)
is actually used only when customers i and j do require a visit , while cus-
tomers i+1, i+2, ..., j do not require a visit. This event occurs with probability
pipj

∏j−1
k=i+1(1− pk) (when j ≤ n). In the special class of PTSP instances where

pi = p for all customers i ∈ V (the homogeneous PTSP), equation (3) becomes

E[Lλ] = p2
n−2
∑

r=0

(1− p)rL
(r)
λ (4)

where L
(r)
λ ≡

∑n

j=1 d(j, (j + 1 + r) mod n). The L
(r)
λ ’s have the combinatorial

interpretation of being the lengths of a collection of gcd(n,r + 1) sub-tours3

λ
(r)
p , obtained from tour λ by visiting one customer and skipping the next r

customers. As an example, Fig. 1 shows λ
(0)
p (i.e., the a priori tour), λ

(1)
p and

λ
(2)
p for a PTSP with 8 customers.

3 Ant Colony Optimization

In ACO algorithms a colony of artificial ants iteratively and stochastically con-
structs solutions for the problem under consideration using artificial pheromone
trails and heuristic information. The pheromone trails are modified by ants
during the algorithm execution in order to store information about ‘good’
solutions. Most ACO algorithms follow the algorithmic scheme given in Fig.
2.

ACO are stochastic solution construction algorithms, which, in contrast to
local search algorithms, may not find a locally optimal solution. Many of the best
performing ACO algorithms improve their solutions by applying a local search
algorithm after the solution construction phase. Our primary goal in this work

3 The term ‘gcd’ stays for ‘greatest common divisor’.
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Fig. 1. The lengths of the (sub)tours λ
(0)
p , λ

(1)
p and λ

(2)
p , constitute the first three terms

of the expected length for the homogeneous PTSP. From left to right, the total length
of each set of (sub)tours gives the terms L

(0)
λ , L

(1)
λ and L

(2)
λ of equation (4).

is to analyze the PTSP tour construction capabilities of ACO, hence in this first
investigation we do not use local search.

We consider a particular ACO algorithm, the probabilistic Ant Colony Sys-
tem, or pACS. This is an adaptation to the PTSP of the ACS algorithm [7, 5],
which was successfully applied to the TSP. In the following, we describe how
pACS (and ACS) builds a solution and how it updates pheromone trails.

procedure ACO metaheuristic for combinatorial optimization problems
Set parameters, initialize pheromone trails
while (termination condition not met)

ConstructSolutions
ApplyLocalSearch % optional
UpdateTrails

end while

Fig. 2. High level pseudocode for the ACO metaheuristic.

3.1 Solution construction

A feasible solution for an n-city PTSP is an a priori tour which visits all cus-
tomers. Initially m ants are positioned on their starting cities chosen according to
some initialization rule (e.g., randomly). Then, the solution construction phase
starts (procedure ConstructSolutions in Fig. 2). Each ant probabilistically builds
a tour by choosing the next customer to move to on the basis of two types of
information, the pheromone τ and the heuristic information η. To each arc join-
ing two customers i, j it is associated a varying quantity of pheromone τij , and
a heuristic value ηij = 1/dij , which is the inverse of the distance between i and
j. When an ant k is on city i, the next city is chosen as follows.



– With probability q0, a city j that maximizes τij · η
β
ij is chosen in the set

Jk(i) of the cities not yet visited by ant k. Here, β is a parameter which
determines the relative influence of the heuristic information.

– With probability 1−q0, a city j is chosen randomly with a probability given
by

pk(i, j) =







τij ·η
β
ij

∑

r∈Jk(i) τir·η
β
ir

, if j ∈ Jk(i)

0, otherwise.
(5)

Hence, with probability q0 the ant chooses the best city according to the
pheromone trail and to the distance between cities, while with probability 1−q0

it explores the search space in a biased way.

3.2 Pheromone trails update

Pheromone trails are updated in two stages. In the first stage, each ant, after it
has chosen the next city to move to, applies the following local update rule:

τij ← (1− ρ) · τij + ρ · τ0, (6)

where ρ, 0 < ρ ≤ 1, and τ0, are two parameters. The effect of the local updating
rule is to make less desirable an arc which has already been chosen by an ant,
so that the exploration of different tours is favored during one iteration of the
algorithm.

The second stage of pheromone update occurs when all ants have terminated
their tour. Pheromone is modified on those arcs belonging to the best tour since
the beginning of the trial (best-so-far tour) by the following global updating rule

τij ← (1− α) · τij + α ·∆τij , (7)

where
∆τij = ObjectiveFunc−1

best (8)

with 0 < α ≤ 1 being the pheromone decay parameter, and ObjectiveFuncbest is
the value of the objective function of the best-so-far tour. In pACS the objective
function is the PTSP expected length of the a priori tour, while in ACS the
objective function is the a priori tour length.

4 Experimental tests

4.1 Homogeneous PTSP Instances

Homogeneous PTSP instances were generated starting from TSP instances and
assigning to each customer a probability p of requiring a visit, with p ranging
from 0.1 to 0.9 with a 0.1 interval. We considered 21 TSP instances taken from
two benchmarks. The first benchmark is the TSPLIB at http://www.iwr.uni-
heidelberg.de/groups/comopt/software/TSPLIB95. From this benchmark we



considered 7 symmetric instances4 with a number of city between 30 and 200.
The second benchmark is a group of instances where customers are randomly
distributed on the square [0, 106]. For generating random instances we used
the Instance Generator Code of the 8th DIMACS Implementation Challenge at
http://www.research.att.com/∼dsj/chtsp/download.html. We considered 7 uni-
form distributed instances and 7 clustered distributed instances from this bench-
mark, with a number of cities respectively equal to 50, 100, 150,..., 350.

4.2 Comparison between pACS and other tour construction

heuristics

We compared pACS with two simple tour construction heuristics, the radial sort
and the random best heuristic. The random best heuristic generates random
tours and selects the one with the shortest expected length. Random best and
pACS were run on the same machine (a Pentium Xeon, 1GB of RAM, 1.7 GHz
processor) for the same CPU time (stoptime = k · n2 CPU seconds, with k =
0.01). For pACS we chose the same settings which yielded good performance in
earlier studies with ACS on the TSP [5]: m = 10, β = 2, q0 = 0.98, α = ρ = 0.1
and τ0 = 1/(n ·Obj ), where n is the number of customers and Obj is the value
of the objective function evaluated with the nearest neighbor heuristic [5]. For
each experiment, we run 5 independent trials of pACS.

Radial sort builds a tour by sorting customers by angle with respect to the
‘center of mass’ of the customer spatial distribution. The ‘center of mass’ coor-
dinates have been computed here by averaging over the customers coordinates.
The a priori tour which radial sort builds does not depend on the customer prob-
abilities, and a unique tour is thus used as a priori tour for all probabilities of the
PTSP. Even if very simple, this heuristic is interesting for the PTSP, because
of the conjecture [2] that the tour generated by radial sort is near optimal for
small customer probabilities. Moreover, the combination of radial sort and the
1-shift local search have shown to be the best combination of tour construction
and tour improvement heuristics in [2]. A disadvantage of radial sort is that it is
only applicable to those PTSP instances where the coordinates of customers are
known. In general, this is not the case for asymmetric PTSP instances, where
the arc weights may have, for instance, the meaning of travel times.

The average relative performance of pACS with respect to radial sort and
random best heuristics is shown in Fig. 3. The first observation is that pACS
always performs better than radial sort and random best, for each probability
and for each type of instance, while random best is always very poor both with
respect to pACS and to radial sort. Secondly, radial sort and pACS are equivalent
for small probabilities (prob = 0.1). This results supports the conjecture of near-
optimality of radial sorted tours for small probability, and it is interesting that
this also applies to non uniform instances, such as TSPLIB and random clustered
instances.

4 The TSPLIB symmetric instances considered are oliver30, eil51, eil76, kroA100,
lin105, ch150, d198.
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Fig. 3. Relative performance of pACS with respect to radial sort and random best
heuristics. On the horizontal axis there is the customers probability. Each point is an
average over 21 symmetric PTSP instances. Error bars represent average deviation,
defined as

∑n

i=1 |xi − <x> |/n, with n = 21.

4.3 Absolute performance

For the PTSP instances we tested, the optimal solution is not known. Therefore,
an absolute performance evaluation of a PTSP heuristic can only be done against
some lower bound of the optimal PTSP solution, when this is available and tight
enough. A lower bound to the optimal solution would give us an upper bound to
the error performed by the pACS heuristic with respect to the PTSP optimum.
In fact, if LB is the lower bound and E[Lλ∗ ] is the optimal solution value, then
by definition we have

E[Lλ∗ ] ≥ LB . (9)

If the solution value of pACS is E[Lλ], then the following inequality holds for
the relative error

E[Lλ]−E[Lλ∗ ]

E[Lλ∗ ]
≤

E[Lλ]− LB

LB
. (10)

In the following we apply two different techniques for evaluating a lower bound
to the optimal PTSP solution (and thus for evaluating the absolute performance
of pACS). In the first case a theoretical lower bound is used while in the second
case the lower bound is estimated by using Monte Carlo sampling.

Theoretical lower bound to the PTSP optimum. For the homogeneous
PTSP and for instances where the optimal length LTSP of the corresponding



TSP is known, it is possible to use the following lower bound to the optimal
expected length, as was proved in [2]

LB = pLTSP (1− (1− p)n−1) . (11)

If we put this lower bound into the right side of equation (10), we obtain an upper
bound of the relative error of pACS. Fig. 4 shows the absolute performance of
pACS, evaluated with this method, for a few TSPLIB instances. From the figure
we see that, for example, pACS finds a solution within 15% of the optimum
for a homogeneous PTSP with customers probability 0.9. This technique for
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Fig. 4. Upper bound of relative percent error of pACS for 5 TSPLIB instances. Note
that, for decreasing customers probability, the upper bound to the relative error be-
comes bigger at least partially because the lower bound to the optimum becomes less
tight.

evaluating the absolute performance of a PTSP heuristic is rigorous, but has the
limitation that the lower bound for small probabilities is not tight, so that it
produces big overestimates of the error. The following technique is more flexible
and gives better estimates of the error, even if, as we will see, it also has some
limitations.

Estimated a posteriori optimum. The expected tour length under re opti-
mization is defined as the average of the lengths of the optimal TSP solution to
each subset of customers, and it is also called a posteriori optimum, since it is
the value obtained by solving a TSP problem once the set of customers requiring
a visit on a certain day is known. The a posteriori optimum is a lower bound on



the optimal PTSP solution, because the length induced by the PTSP a priori
tour on a subset of customers cannot be smaller than the optimal TSP solutions
for that subset of customers.

The exact evaluation of the a posteriori optimum is impractical, because it
requires the solution of 2n instances of the TSP to optimality. The technique
proposed in [2], consists in making two approximations. First, only a random
sample of the 2n subsets of customers is selected, by means of a stratified Monte
Carlo sampling (see [2] for a detailed description). Second, each random sample
of customers S is solved to near optimality as a TSP by choosing the best of
|S|/γ random tours (γ is a parameter) and applying to it the 3-opt local search.

This technique can be applied easily only to small instances (say, up to 100
customers). Otherwise, care must be taken in order to avoid overflow when gen-
erating the stratified samples from a set of 2n subsets of customers. We report
average results for 10 random uniform and clustered instances in Fig. 5. In our
tests we used γ = 0.5 and about 400 samples. From the figure we see that pACS
is within 8% of the optimum when applied to uniform random instances, while
it is within 14% of the optimum if the instances are clustered.
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Fig. 5. Relative percent error with respect to the estimated a posteriori optimum
for random uniform instances (U50) and for random clustered instances (C50) of 50
customers. Each point is an average over 10 random instances.

4.4 Comparison between pACS and ACS

In some cases an a priori tour found by a TSP heuristic can also be a good so-
lution for the PTSP. An example of this is the a priori tour found by radial sort



for small probabilities, as discussed in section 4.2. In this section we address the
question of whether an a priori tour found by the ACS heuristic is also good for
the PTSP, or at least as good a the solution found by pACS. In order to assess
the relative performance of ACS versus pACS independently of the details of the
settings, the two algorithms were run with the same parameters. The choice of
this parameter setting is the simplest among many other possibilities for com-
paring ACS and pACS. In fact, it would also be useful to tune pACS parameters,
not only to achieve a better performance, but also to see how much they differ
from ACS parameters (which are tuned on the TSP). Fig. 6 summarizes the re-
sults obtained. The figure shows the relative performance of pACS versus ACS,
averaged over the 21 tested symmetric PTSP instances. From the figure we see
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Fig. 6. Relative performance of pACS versus ACS for the homogeneous PTSP. The
vertical axis represents (E[Lλ(pACS)]−E[Lλ(ACS)])/E[Lλ(pACS)]. On the horizon-
tal axis there is the customer probability p. Each point of the graph is an average over
21 symmetric homogeneous PTSP instances. Note that for p = 1 ACS outperforms
pACS, since for a fixed CPU stopping time ACS makes more iterations.

that for small enough probabilities pACS outperforms ACS. Nevertheless, for all
the problems we tested there is a range of probabilities [p0, 1] for which ACS
outperforms pACS. The critical probability p0 at which this happens depends
on the problem.

The reason why pACS does not always perform better than ACS is clear
if we consider two aspects. The first is the time complexity (speed) of ACS
versus pACS. In both algorithms one iteration (i.e., one cycle through the while

condition of Fig. 2) is O(n2) [6], but the constant of proportionality is bigger in



pACS than in ACS. To see this one should consider the procedure UpdateTrail

of Fig. 2, where the best-so-far tour must be evaluated in order to choose the
arcs on which pheromone is to be updated. The evaluation of the best-so-far
tour requires O(n) time in ACS and O(n2) time in pACS. ACS is thus faster
and always performs more iterations than pACS for a fixed CPU time.

The second reason why ACS performs better than pACS for high proba-
bilities is that the length of an a priori tour (ACS objective function) may be
considered as an O(n) approximation to the O(n2) expected length (pACS ob-
jective function). In general, the worse the approximation, the worse will be the
solution quality of ACS versus pACS. The quality of the approximation depends
on the set of customer probabilities pi. In the homogeneous PTSP, where cus-
tomer probability is p for all customers, it is easy to see the relation between the
two objective functions. For a given a priori tour λ of length Lλ we have

∆ = Lλ −E[Lλ] = (1− p2)Lλ −

n−2
∑

r=1

(1− p)rL
(r)
λ , (12)

which implies

∆ ∼ O(q) (13)

for q → 0, with q = 1−p. Therefore, the higher the probability, the better is the
a priori tour length Lλ as an approximation for the expected tour length E[Lλ].

5 Conclusions and future work

In this paper we investigated the potentialities of pACS, a particular ACO al-
gorithm, for the homogeneous PTSP. We showed that the pACS algorithm is a
promising tour construction heuristic for the PTSP. We compared pACS with
other tour construction heuristics and we provided an estimation of the absolute
error with respect to the optimal PTSP solution for some instances. We also
compared pACS to ACS, and we showed that for customers probability close to
1, the ACS heuristic is a better alternative than pACS.

In this paper the ACO metaheuristic was applied without a local search
for improving the a priori tour. The study of an efficient local search for the
PTSP, which should greatly improve the solution quality of pACS and of any
tour construction heuristic in general, is an important direction of research. At
present we are investigating the heterogeneous PTSP, for different probability
configurations of customers. This is an interesting issue, since it is closer to a
real-world problem than the homogeneous PTSP.
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