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Abstract. The influence of the allowed running time on the choice of
the parameters of an ant system is investigated. It is shown that differ-
ent parameter values appear to be optimal depending on the algorithm
run-time. The performance of the MAX -MIN Ant System (MMAS)
on the University Course Timetabling Problem (UCTP) – a type of con-
straint satisfaction problem – is used as an example. The parameters
taken into consideration include the type of the local search used, and
some typical parameters for MMAS – the τmin and ρ. It is shown that
the optimal parameters depend significantly on the time limits set. Con-
clusions summarizing the influence of time limits on parameter choice,
and possible methods of making the parameter choice more independent
from the time limits, are presented.

1 Introduction

Ant Colony Optimization (ACO) is a metaheuristic proposed by Dorigo et al. [1].
The inspiration of ACO is the foraging behavior of real ants. The basic ingredient
of ACO is the use of a probabilistic solution construction mechanism based
on stigmergy. ACO has been applied successfully to numerous combinatorial
optimization problems including the traveling salesman problem [2], quadratic
assignment problem [3], scheduling problems [4], and others. In this paper we
focus on the MAX -MIN Ant System [5] – a version of ACO.

ACO, similarly to any other metaheuristic, may be parameterized. This
means that in order to be able to deliver optimal performance, the ant algorithm
uses a number of parameters that precisely define its operation. The parame-
ters are usually chosen specifically for the class of problems the ant algorithm
is to tackle. Usually, the optimal (or near optimal) parameters are chosen by
the trial-and-error procedure. As the number of trials necessary to fine-tune the
parameters is usually quite high, it is often the case that limited time is used for
each algorithm run. The best parameters found are then used for tackling actual
problems. In turn, the actual problem solving runs tend to be much longer.

We do not focus on the actual results obtained by the algorithm, but only
on choosing the best set of parameters optimizing algorithm performance within
allowed run-time limit. This paper attempts to show that optimal parameters



for the ant algorithm depend significantly on the time given it to run. Hence,
the parameter fine-tuning done with run-times significantly shorter than actual
problem solving runs may cause choosing suboptimal parameters. It is assumed
that for the time limits investigated, the algorithm does not reach optimality –
it does not find the optimal solution.

The remaining part of the paper is organized as follows: Section 2 briefly
presents the example problem used for evaluating the performance of the ant
algorithm. Section 3 presents the ant system used to solve the problem – the
MAX -MIN Ant System. The main design considerations and parameters used
are highlighted. Section 4 presents the local search used by the algorithm, and
discusses how time limits imposed determine the choice of the local search type.
Section 5 discusses some other parameters used by the algorithm, and presents
the relationship between their optimal values and the time limits imposed. Fi-
nally, Section 6 summarizes the findings and presents the conclusions drawn.

2 Example Problem

The problem used to illustrate the thesis of this paper, is the University Course
Timetabling Problem (UCTP) [6–8]. It is a type of constraint satisfaction prob-
lem. It consists of a set of n events E = {e1, . . . , en} to be scheduled in a set of i

timeslots T = {t1, . . . , ti}, and a set of j rooms R = {r1, . . . , rj} in which events
can take place. Additionally, there is defined a set of students S who attend
the events, and a set of features F satisfied by rooms and required by events.
Each student is already preassigned to a subset of events. A feasible timetable
is one in which all events have been assigned a timeslot and a room, so that the
following hard constraints are satisfied:

– no student attends more than one event at the same time;
– the room is big enough for all the attending students and satisfies all the

features required by the event;
– only one event is taking place in each room at a given time.

In addition, a feasible candidate timetable is penalized equally for each oc-
currence of the following soft constraint violations:

– a student has a class in the last slot of the day;
– a student has more than two classes in a row (one penalty for each class

above the first two);
– a student has exactly one class during a day.

The infeasible timetables are worthless and are considered equally bad re-
gardless of the actual level of infeasibility. The objective is to minimize the
number of soft constraint violations (#scv) in a feasible timetable. The solution
to the UCTP is a mapping of events into particular timeslots and rooms. Fig. 1
shows an example of a timetable.



Fig. 1. Timetable of i timeslots and j rooms (k = i · j places). Some events from the
set E have already been placed.

Two instances of the UCTP are used for illustrating the performance of
the ant algorithm in this paper – competition04 and competition07. These
instances have been proposed as a part of the International Timetabling Com-
petition1. Note that these instances are known to have a perfect solution, i.e. a
solution where no hard or soft constraints are violated.

3 Algorithm Description

The basic mode of operation of the MAX -MIN Ant System used for the
experiments is as follows. At each iteration of the algorithm, each of the m ants
constructs a complete assignment C of events into timeslots and rooms. Following
a pre-ordered list of events, the ants choose the timeslot and room for the given
event probabilistically, guided by stigmergic information. This information is in
the form of a matrix of pheromone values τ : E × T × R → R+, where E is
the set of events, T is the set of timeslots, and R is a set of rooms. In order to
maintain simplicity of the notation, let us call the timeslot-room combination a
place. The pheromone matrix becomes then of form: τ : E × P → R+, where P

is the set of k places, and k = |P | = |T | · |R| = i · j.
Also, some problem specific knowledge (heuristic information) is used by

the algorithm. The place for an event (i.e. the timeslot-room combination) is
chosen only from the ones that are suitable for the given event - placing the
event there will not violate any hard constraint. If at some point of time during
the construction of the assignment there is no such a place available, a list
of timeslots is extended by one, and the event is placed in one of the rooms
of this additional timeslot. This of course results in an infeasible solution2 as
the number of timeslots used from now on exceeds i. This also means that the
pheromone matrix has to be extended as well. It is done by creating an extended
set T ′ of i′ timeslots, and consequently a new extended set P ′ of k′ places. The
new pheromone matrix is defined as τ : E × P ′ → R+. Note that initially it is
assumed that i′ = i and k′ = k.

1 http://www.idsia.ch/Files/ttcomp2002/
2 Only for this particular ant, and only in this iteration.



Once all the ants have constructed their assignment of events into places, a
local search routine is used to further improve the solutions. More details about
local search routine are provided in Sec. 4. Finally the best solution of each
iteration is compared to the global best solution found so far. If the iteration
best solution is better than the global best, it is replaced. Only the global best
solution is used for the pheromone update.

If the differences between extreme pheromone values were too large, all ants
would almost always generate the same solutions, which would mean algorithm
stagnation. The MAX -MIN Ant System introduces upper and lower limits on
the pheromone values – τmax and τmin respectively [5] – that prevent this. The
maximal difference between the extreme levels of pheromone may be controlled,
and thus the search intensification versus diversification may be balanced. The
pheromone update rule is as follows (for the particular case of assigning events
e into places p):

τ(e,p) ←

{

(1 − ρ) · τ(e,p) + τfixed if (e, p) is in Cglobal best

(1 − ρ) · τ(e,p) otherwise,
(1)

where ρ ∈ [0, 1] is the evaporation rate, and τfixed is the pheromone update
value. Pheromone update is completed using the following:

τ(e,p) ←







τmin if τ(e,p) < τmin,

τmax if τ(e,p) > τmax,

τ(e,p) otherwise.
(2)

The pheromone update value τfixed is a constant that has been established
after some experiments with the values calculated based on the actual quality
of the solution. The function q measures the quality of a candidate solution C

by counting the number of constraint violations. According to the definition of
MMAS, τmax = 1

ρ
· g

1+q(Coptimal)
, where g is a scaling factor. Since it is known

that q(Coptimal) = 0 for the considered test instances, we set τmax to a fixed value
τmax = 1

ρ
. We observed that the proper balance of the pheromone update and

the evaporation rate was achieved with a constant value of τfixed = 1.0, which
was also more efficient than the calculation of exact value based on quality of
the solution.

4 Influence of Local Search

It has been shown in the literature that ant algorithms perform particularly
well, when supported by a local search (LS) routine [2, 9, 10]. There were also
attempts to design the local search for the particular problem tackled here (the
UCTP) [11]. Here, we try to show that although adding an LS to an algorithm
improves the results obtained, it is important to carefully choose the type of such
LS routine, especially with regard to algorithm running time limits imposed.

The LS used here by the MMAS solving the UCTP consists of two major
modules. The first module tries to improve an infeasible solution (i.e. a solution



that uses more than i timeslots), so that it becomes feasible. Since its main
purpose is to produce a solution that does not contain any hard constraint
violations and that fits into i timeslots, we call it HardLS. The second module
of the LS is run only if a feasible solution is available (either generated by an
ant directly, or obtained after running HardLS). This module tries to increase
the quality of the solution by reducing number of the soft constraint violations
(#scv), and hence is called SoftLS. It does so by rearranging the events in
the timetable, but any such rearrangement must never produce an infeasible
solution.

The HardLS module is always called before calling the SoftLS module, if the
solution found by an ant is infeasible. Also, it is not parameterized in any way,
so in this paper we will not go into details of its operation.

SoftLS rearranges the events aiming at increasing the quality of the already
feasible solution, without introducing infeasibility. This means that an event may
only be placed in timeslot tl:l≤i. In the process of finding the most efficient LS,
we developed the following three types of SoftLS:

– type 0 – The simplest and the fastest version. It tries to move one event at
a time to an empty place that is suitable for this event, so that after such
a move the quality of the solution is improved. The starting place is chosen
randomly, and then the algorithm loops through all the places trying to put
the events in empty places until a perfect solution is found, or until in the
last k = |P | iterations there was no improvement.

– type 1 – Version similar to the SoftLS type 0, but also enhanced by the
ability to swap two events in one step. The algorithm not only checks, if an
event may be moved to another empty suitable place to improve the solution,
but also checks, if this event could perhaps be swapped with any other event.
Only moves (or swaps) that do not violate any hard constraints and improve
the overall solution are accepted. This version of SoftLS usually provides
a greater solution improvement than the SoftLS type 0, but also a single
run takes significantly more time.

– type 2 – The most complex version. In this case, as a first step, the SoftLS

type 1 is run. After that, the second step is executed: the algorithm tries to
further improve the solution by changing the order of timeslots. It attempts
to swap any two timeslots (i.e. move all the events from one timeslot to the
other without changing the room assignment), so the solution is improved.
The operation continues until no swaps of any two timeslots may further
improve the solution. The two steps are repeated until a perfect solution is
found, or neither of them has produced any improvement. This version of
SoftLS is the most time consuming.

4.1 Experimental Results

We ran several experiments in order to establish, which of the presented SoftLS

types is best suited for the problem being solved. Fig. 2 presents the performance
of our ant algorithm with different versions of SoftLS, as a function of time limit
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Fig. 2. Mean value of the quality of the solutions (#scv) generated by the MMAS
using different versions of local search on two instances of the UCTP – competition04

and competition07.

imposed on the algorithm run-time. Note that we initially focus here on the three
basic types of SoftLS. The additional SoftLS type – probabilistic LS – that is
also presented on this figure, is described in more detail in Sec. 4.2.

We ran 100 trials for each of the SoftLS types. The time limit imposed on
each run was 672 seconds (chosen with the use of benchmark program supplied
by Ben Peachter as part of the International Timetabling Competition). We
measured the quality of the solution throughout the duration of each run. All
the experiments were conducted on the same computer (AMD Athlon 1100 MHz,
256 MB RAM) under a Linux operating system.

Fig. 2 clearly indicates the differences in performance of the MMAS, when
using different types of SoftLS. While the SoftLS type 0 produces first results
already within the first second of the run, the other two types of SoftLS produce
first results only after 10-20 seconds. However, the first results produced by
either the SoftLS type 1 or type 2 are significantly better than the results
obtained by the SoftLS type 0 within the same time. With the increase of
allowed algorithm run-time, the SoftLS type 0 quickly outperforms SoftLS

type 1, and then type 2. While in case of competition07, the SoftLS type

0 remains the best within the imposed time limit (i.e. 672 seconds), in case
of competition04, the SoftLS type 2 apparently eventually catches up. This
may indicate that if more time was allowed for each version of the algorithm to
run, the best results may be obtained by SoftLS type 2, rather than type 0.
It is also visible that towards the end of the search process, the SofLS type 1

appears to converge faster than type 0 or type 2 for both test instances. Again,
this may indicate that – if longer run-time was allowed – the best SoftLS type
may be different yet again.



It is hence very clear that the best of the three presented types of local
search for the UCTP may only be chosen after defining the time limit for a
single algorithm run. The examples of time limits and appropriate best LS type
are summarized in Tab. 1.

Table 1. Best type of the SoftLS depending on example time limits.

Time Limit Best SoftLS Type
[s] competition04 competition07

5 type 0 type 0

10 type 1 type 1

20 type 2 type 2

50 type 0 type 2

200 type 0 type 0

672 type 0/2 type 0

4.2 Probabilistic Local Search

After experimenting with the basic types of SoftLS presented in Sec. 4, we
realized that apparently different types of SoftLS work best during different
stages of the search process. We wanted to find a way to take advantage of all
of the types of SoftLS.

First, we thought of using a particular type of SoftLS depending on the time
spent by the algorithm on searching. However this approach, apart from having
an obvious disadvantage of the necessity of measuring time and being dependent
on the hardware used, had some additional problems. We found that the solution
(however good it was) generated with the use of any basic type of SoftLS, was
not always easy to be further optimized by another type of SoftLS. When the
type of SoftLS used changed, the algorithm spent some time recovering from the
previously found local optimum. Also, the sheer necessity of defining the right
moments, when the SoftLS type was to be changed was a problem. It had to be
done for each problem instance separately, as those times differed significantly
from instance to instance.

In order to overcome these difficulties, we came up with the idea of probabilis-

tic local search. Such local search would probabilistically choose the basic type
of the SoftLS to be used. Its behavior may be controlled by proper adjustment
of the probabilities of running the different basic types of SoftLS. After some
initial tests, we found that rather small probability of running the SoftLS type

1 and type 2 comparing to the probability of running the SoftLS type 0, pro-
duced best results within the time limit defined. Fig. 2 also presents the mean
values obtained by 100 runs of this probabilistic local search. The probabilities
of running each type of the basic SoftLS types that were used to obtain these
results, are listed in Tab. 2.



Table 2. Probabilities of running different types of the SoftLS.

SoftLS Type Probabilities
competition04 competition07

type 0 0.90 0.94
type 1 0.05 0.03
type 2 0.05 0.03

The performance of the probabilistic SoftLS is apparently the worst for
around first 50 seconds of the run-time for both test problem instances. After
that, it improves faster than the performance of any other type of SoftLS, and
eventually becomes the best. In case of the competition04 problem instance, it
becomes the best already after around 100 seconds of the run-time, and in case
of the competition07 problem instance, after around 300 seconds.

It is important to note that the probabilities of running the basic types of
SoftLS have been chosen in such a way that this probabilistic SoftLS is in
fact very close to the SoftLS type 0. Hence, its characteristics are also similar.
However, by appropriately modifying the probability parameters, the behavior
of this probabilistic SoftLS may be adjusted, and hence provide good results for
any given time limits. In particular, the probabilistic SoftLS may be reduced to
any of the basic versions of SoftLS.

5 ACO Specific Parameters

Having shown in Sec. 4 that choice of the best type of local search very much
depends on the time the algorithm is run, we wanted to see if this also applies
to other algorithm parameters. Another aspect of the MAX -MIN Ant System
that we investigated with regard to the imposed time limits, was a subset of the
typical MMAS parameters: evaporation rate ρ and pheromone lower bound
τmin. We chose these two parameters among others, as they have been shown in
the literature [12, 10, 5] to have significant impact on the results obtained by a
MAX -MIN Ant System.

We generated 110 different sets of these two parameters. We chose the evapo-
ration rate ρ ∈ [0.05, 0.50] with the step of 0.05, and the pheromone lower bound
τmin ∈ [6.25 · 105, 6.4 · 103] with the logarithmic step of 2. This gave 10 different
values of ρ and 11 different values of τmin – 110 possible pairs of values. For each
such pair, we ran the algorithm 10 times with the time limit set to 672 seconds.
We measured the quality of the solution throughout the duration of each run
for all the 110 cases. Fig. 3 presents the gray-shade-coded grid of ranks of mean
solution values obtained by the algorithm with different sets of the parameters
for four different run-times allowed (respectively 8, 32, 128, and 672 seconds)3.
The results presented, were obtained for the competition04 instance.

3 The ranks were calculated independently for each time limit studied.
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Fig. 3. The ranks of the solution means for the competition04 instance with regard
to the algorithm run-time. The ranks of the solutions are depicted (gray-shade-coded)
as function of the pheromone lower bound τmin, and pheromone evaporation rate ρ.

The results indicate that the best solutions – those with higher ranks (darker)
– are found for different sets of parameters, depending on the allowed run-time
limit. In order to be able to analyse the relationship between the best solutions
obtained and the algorithm run-time more closely, we calculated the mean value
of the results for 16 best pairs of parameters, for several time limits between 1
and 672 seconds. The outcome of that analysis is presented on Fig. 4. The figure
presents respectively: the average best evaporation rate as a function of algorithm
run-time: ρ(t), the average best pheromone lower bound as a function of run-
time: τmin(t), and also how the pair of the best average ρ and τmin, changes with
run-time. Additionally, it shows how the average best solution obtained with the
current best parameters change with algorithm run-time: q(t).

It is clearly visible that the average best parameters change with the change
of run-time allowed. Hence, similarly as in case of the local search, the choice
of parameters should be done with close attention to the imposed time limits.
At the same time, it is important to mention that the probabilistic method
of choosing the configuration that worked well in the case of the SoftLS, is
rather difficult to implement in case of the MMAS specific parameters. Here,
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the change of parameters’ values has its effect on algorithm behavior only after
several iterations, rather than immediately as in case of LS. Hence, rapid changes
of these parameters may only result in algorithm behavior that would be similar
to simply using the average values of the probabilistically chosen ones.

More details about the experiments conducted, as well as the source code of
the algorithm used, and also results for other test instances that could not be
included in the text due to the limited length of this paper, may be found on
the Internet4.

4 http://iridia.ulb.ac.be/~ksocha/antparam03.html



6 Conclusions and Future Work

Based on the examples presented, it is clear that the optimal parameters of the
MAX -MIN Ant System may only be chosen with close attention to the run-
time limits. Hence, the time-limits have to be clearly defined before attempting
to fine-tune the parameters. Also, the test runs used to adjust the parameter
values should be conducted under the same conditions as the actual problem
solving runs.

In case of some parameters, such as the type of the local search to be used,
a probabilistic method may be used to obtain very good results. For some other
types of parameters (τmin and ρ in our example) such a method is not so good,
and some other approach is needed. The possible solution is to make the parame-
ter values variable throughout the run of the algorithm. The variable parameters
may change according to a predefined sequence of values, or they may be adap-
tive – the changes may be a derivative of a certain algorithm state.

This last idea seems especially promising. The problem however is to define
exactly how the state of the algorithm should influence the parameters. To make
the performance of the algorithm independent from the time limits imposed on
the run-time, several runs are needed. During those runs, the algorithm (or at
least algorithm designer) may learn what is the relation between the algorithm
state, and the optimal parameter values. It remains an open question how diffi-
cult it would be to design such a self-fine-tuning algorithm, or how much time
such an algorithm would need in order to learn.

6.1 Future Work

In the future, we plan to investigate further the relationship between different
ACO parameters and run-time limits. This should include the investigation of
other test instances, and also other example problems. We will try to define
a mechanism that would allow a dynamic adaptation of the parameters. Also,
it is very interesting to see if the parameter-runtime relation is similar (or the
same) regardless of the instance or problem studied (at least for some ACO
parameters). If so, this could permit proposing a general framework of ACO
parameter adaptation, rather than a case by case approach.

We believe that the results presented in this paper may also be applicable
to other combinatorial optimization problems solved by ant algorithms. In fact
it is very likely that they are also applicable to other metaheuristics as well5.
The results presented in this paper do not yet allow to simply jump to such
conclusions however. We plan to continue the research to show that it is in fact
the case.
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Makela, M., Miettinen, K., Neittaanmäki, P., Périaux, J., eds.: Proceedings of
Evolutionary Algorithms in Engineering and Computer Science: Recent Advances
in Genetic Algorithms, Evolution Strategies, Evolutionary Programming, Genetic
Programming and Industrial Applications (EUROGEN 1999), John Wiley & Sons
(1999)
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