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Abstract

Ant colony optimization (ACO) is a metaheuristic approach to tackle hard combinatorial optimization prob-
lems. The basic component of ACO is a probabilistic solution construction mechanism. Due to its constructive
nature, ACO can be regarded as a tree search method. Based on this observation, we hybridize the solution
construction mechanism of ACO with beam search, which is a well-known tree search method. We call this
approach Beam-ACO. The usefulness of Beam-ACO is demonstrated by its application to open shop schedul-
ing (OSS). We experimentally show that Beam-ACO is a state-of-the-art method for OSS by comparing the
obtained results to the best available methods on a wide range of benchmark instances.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Among the approximate methods for solving combinatorial optimization (CO) problems [1] we
can identify two large groups: tree search methods [2] and local search methods [3]. The nature of
tree search methods is constructive. The solution construction mechanism maps the search space to a
tree structure, where a path from the root node to a leaf corresponds to the process of constructing a
solution. Then, the search space is explored by repeated or parallel solution constructions. In contrast,
local search methods explore a search space by moving from solution to solution on a landscape
that is imposed by a neighborhood structure on the search space. The simplest example is a steepest
descent local search that moves at each step from the current solution to the best neighbor of the
current solution.
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Most of the classical tree search methods have their origin in the Aelds of operations research
(OR) or artiAcial intelligence (AI). Examples are greedy heuristics [1], backtracking methods [2], and
beam search (BS) [4]. They are often relaxations or derivations of exact methods such as branch
and bound [1]. In the past 15–20 years, metaheuristics [5,6] emerged as alternative approximate
methods for solving CO problems. Most of the metaheuristic techniques are based on local search.
Examples are tabu search (TS) [7], simulated annealing (SA) [8], and iterated local search (ILS) [9].
However, other metaheuristics such as the greedy randomized adaptive search procedure (GRASP)
[10] can be regarded as probabilistic tree search methods (see [11]).

1.1. Our contribution

An interesting example of a metaheuristic that can be seen as a probabilistic tree search method is
ant colony optimization (ACO) [12,13]. In ACO algorithms, artiAcial ants construct solutions from
scratch by probabilistically making a sequence of local decisions. At each construction step an ant
chooses exactly one of possibly several ways of extending the current partial solution. The rules
that deAne the solution construction mechanism in ACO implicitly map the search space of the
considered problem (including the partial solutions) onto a search tree. This view of ACO as a tree
search procedure allows us to put ACO into relation with classical tree search methods such as beam
search (BS) [14]. One of the interesting features of BS is that it works on a set of partial solutions in
parallel, extending each partial solution—in contrast to ACO—at each step in several possible ways.
However, in BS the extension of partial solutions is usually done by using a deterministic greedy
policy with respect to a weighting function that gives weights to the possible extensions. The idea of
this paper is to hybridize the solution construction mechanism of ACO with BS, which results in a
general approach that we call Beam-ACO. We apply Beam-ACO to open shop scheduling (OSS) [4].
We show that Beam-ACO improves on the results obtained by the best standard ACO approach for
OSS that was proposed in [5]. Furthermore, we show that Beam-ACO is a state-of-the-art method
for the OSS problem by comparing it to the genetic algorithm by Liaw [16] and to the genetic
algorithm by Prins [17].

1.2. Related work

The connection between ACO and tree search techniques was established before in [18–20]. For
example in [18], the author describes an ACO algorithm for the quadratic assignment problem
(QAP) as an approximate non-deterministic tree search procedure. The results of this approach are
compared to both exact algorithms and BS techniques. Recently, an ACO approach to set partitioning
(SP) that allowed the extension of partial solutions in several possible ways was presented in [19].
Furthermore, ACO has been described from a dynamic programming (DP) [21] perspective in [20],
where ants are described as moving on a tree structure.

The outline of the paper is as follows. In Section 2 we explain the concept of a search tree. In
Section 3 we brieHy outline ACO and BS, before we outline the general concepts of Beam-ACO
in Section 4. In Section 5 we introduce the OSS problem and propose a Beam-ACO algorithm to
tackle this problem. Finally, in Section 6 we provide an experimental evaluation of Beam-ACO and
we oIer a summary and an outlook to the future in Section 7.
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Fig. 1. The search tree for an OSS instance on three operations that is deAned by the construction mechanism of building
permutations of all operations from left to right. The inner nodes of the search tree are partial solutions, whereas the
leaves are solutions.

2. Combinatorial optimization and search trees

According to [1], a CO problem P=(S; f) is an optimization problem in which is given a Anite
set of objects S and an objective function f : S �→ R+ that assigns a positive cost value to each
of the objects. The goal is to And an object of minimal cost value. 1 The objects are solutions to
the problem.

The solutions of a CO problem are generally composed of solution components from a Anite
set of solution components. As an example consider the OSS problem in which the set of solution
components consists of n operations O = {o1; : : : ; on}. Each permutation of the n operations is a
solution to the problem instance under consideration.

Constructive methods are characterized by the fact that they work on partial solutions. Each
constructive method is based on a mechanism for extending partial solutions. Generally, a partial
solution sp is extended by adding a solution component from the set N(sp) of solution components
that are allowed to be added. This set is generally deAned by the problem constraints. A mechanism
for extending partial solutions deAnes a search tree in the following way. The root of a search
tree is the empty partial solution sp = 〈〉, which is the Arst level of the search tree. The second
level of the search tree consists of all partial solutions that can be generated by adding a solution
component to the empty partial solution, and so on. Finally, the leaves of a search tree consist either
of solutions to the problem instance under consideration, or possibly partial solutions that cannot be
further extended. As an example we consider a construction mechanism for the OSS problem that
builds permutations of all operations from left to right by extending a partial solution sp at each
step through adding one of the solution components from N(sp) = {o1; : : : ; on} \ {oi | oi ∈ sp}. The
deAnition of N(sp) results from the fact that only a permutation of all the operations corresponds to
a solution, which implies that an operation oi can be added exactly once. The corresponding search
tree for an OSS problem instance on three operations (i.e., n= 3) is shown in Fig. 1.

3. Ant colony optimization and beam search

The simplest method that operates on a search tree is a greedy heuristic which builds solutions to
a CO problem as follows. Starting from the empty partial solution sp=〈〉, the current partial solution

1 Note that minimizing over an objective function f is the same as maximizing over −f. Therefore, every CO problem
can be described as a minimization problem.



4 C. Blum /Computers & Operations Research ( ) –

ARTICLE IN PRESS

sp is extended at each step by adding a solution component from the set N(sp). This is done until
the current partial solution can either not be further extended or a complete solution is constructed.
A weighting function 	 :N(sp) �→ R+ is used to assign a weight to each possible extension of the
current partial solution. These weights reHect the beneAt of extending a partial solution in diIerent
ways with respect to a certain measure. According to the greedy policy, at each construction step
one of the extensions with the highest weight is chosen. 2 A greedy heuristic follows exactly one
path from the root node to one of the leaf nodes of the search tree.

The main drawback of a greedy heuristic is quite obvious. It depends strongly on the quality of
the weighting function that is used. In the following we brieHy describe ACO and BS, which try to
overcome this dependency on the weighting function in very diIerent ways.

3.1. Ant colony optimization

Ant colony optimization (ACO) [12,13] is a metaheuristic to tackle hard CO problems that was Arst
proposed in the early 1990s [22–24]. The inspiring source of ACO is the foraging behaviour of real
ants. ACO algorithms are characterized by the use of a (parametrized) probabilistic model that is used
to probabilistically construct solutions to the problem under consideration. The probabilistic model is
called the pheromone model. The pheromone model consists of a set of model parameters T, that are
called the pheromone trail parameters. The pheromone trail parametersTi ∈T have values 
i, called
pheromone values. Usually, pheromone trail parameters are associated to the solution components
(or subsets of solution components). ACO algorithms are iterative processes that are terminated
by stopping conditions such as a maximum CPU time. At each iteration, na ants probabilistically
construct solutions to the problem under consideration. Then, optionally a local search procedure
is applied to improve the constructed solutions. Finally, some of the constructed solutions are used
for performing an update of the pheromone values. The pheromone update aims at increasing the
probability to generate high quality solutions over time.

Algorithm 1. Solution construction in ACO.
input: the empty partial solution sp = 〈〉.
while N(sp) 
= ∅ do

Choose c∈N(sp) according to probability p(c |T; 	) {see text}
sp ← extend sp by adding solution component c

end while
output: a solution s (resp., partial solution sp, in case sp is partial and can not be extended)

The solution construction process in ACO algorithms (see Algorithm 1) is equivalent to a greedy
heuristic, except that the choice of the next solution component at each step is done probabilistically
instead of deterministically. The probabilities are called transition probabilities, henceforth denoted
by p(c |T; 	), ∀c∈N(sp). They are a function of the pheromone values and a weighting function
	. The weights assigned by a weighting function are in the context of ACO algorithms commonly
called the heuristic information. An interesting feature is that the pheromone value update makes
the search process that is performed by ACO algorithms adaptive in the sense that the accumulated
search experience is used in order to direct the future search process.

2 An example of a greedy policy is the well-known nearest-neighbor policy for constructing solutions to the travelling
salesman problem (TSP) [1].
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3.2. Beam search

BS is a classical tree search method that was introduced in the context of scheduling [14], but
has since then been successfully applied to many other CO problems. BS algorithms are incomplete
derivatives of branch and bound algorithms, and are therefore approximate methods.

The central idea behind BS is to allow the extension of partial solutions in several possible ways.
At each step the algorithm extends each partial solution from a set B, which is called the beam, in at
most kext possible ways. Each newly obtained partial solution is either stored in the set of complete
solutions Bc (in case it is a complete solution), or in the set Bext (in case it is a further extensible
partial solution). At the end of each step, the algorithm creates a new beam B by selecting up to kbw
(called the beam width) solutions from the set of further extensible partial solutions Bext. In order
to select partial solutions from Bext, BS algorithms use a mechanism to evaluate partial solutions.
An example of such a mechanism is a lower bound. Given a partial solution sp, a lower bound
computes the minimum objective function value for any complete solution s that can be constructed
starting from sp.
At the Arst step, the beam B only consists of the empty partial solution sp = 〈〉. As for greedy

heuristics, the extension of partial solutions is done by applying a deterministic greedy policy based
on a weighting function 	. The algorithmic framework of BS is shown in Algorithm 2. In this
framework, the procedure PreSelect(N(sp)) is optional and is, in some applications, used to Alter
the set of possible extensions of a partial solution.

Algorithm 2. Beam search (BS)
input: an empty partial solution sp = 〈〉, beam width kbw, max. number of extensions kext
B← {sp}, Bc ← ∅
while B 
= ∅ do
Bext ← ∅
for each sp ∈B do
count ← 1
N(sp)← PreSelect(N(sp)) {optional}
while count6 kext AND N(sp) 
= ∅ do
Choose c← argmax{	(c) | c∈N(sp)}
sp′ ← extend sp by adding solution component c
N(sp)←N(sp) \ {c}
if sp′ extensible then
Bext ← Bext ∪ {sp′}

else
Bc ← Bc ∪ {sp′}

end if
count ← count + 1

end while
end for
Rank the partial solutions in Bext using a lower bound LB(·)
B← select the min{kbw; |Bext|} highest ranked partial solutions from Bext

end while
output: a set of candidate solutions Bc
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The existence of an accurate—and computationally inexpensive—lower bound is crucial for the
success of BS. 3 To summarize, a BS technique constructs several candidate solutions in parallel
and uses a lower bound in order to guide the search. BS methods are usually deterministic (i.e. the
policy that is used for extending partial solutions is deterministic).

4. Beam-ACO

As we have outlined in the previous section, ACO and BS have the common feature that they
are both based on the idea of constructing candidate solutions step-by-step. However, the ways by
which the two methods explore the search space are quite diIerent. BS algorithms are guided by
two diIerent components. These are (i) the weighting function that is used to weight the diIerent
possibilities of extending a partial solution, and (ii) the lower bound that is used for restricting the
number of partial solutions at each step. As mentioned before, the policy that is used in BS algorithms
for extending partial solutions is usually deterministic. In contrast, ACO algorithms explore the search
space in a probabilistic way, using past search experience in order to And good areas of the search
space. In other words, ACO’s search process is adaptive.

In general, BS algorithms have the advantage that they are strongly guided by the deterministic
use of a weighting function and by the heuristic guidance of the lower bound. However, the use of a
deterministic policy for extending partial solutions may reduce, in case the weighting function is bad,
the chances of Anding high-quality solutions. On the other side, in ACO algorithms randomization
often helps in searching around presumably good solutions. However, the method is highly sensible
to the balance between heuristic guidance and randomization.

Based on these considerations we expect a beneAt from combining these two ways of explor-
ing a search space. The basic algorithmic framework of our new approach is the framework of
ACO. However, we replace the solution construction mechanism of standard ACO algorithms by
a solution construction mechanism in which each artiAcial ant performs a probabilistic BS. This
probabilistic BS is obtained from Algorithm 2 by replacing the deterministic choice of a solu-
tion component at each construction step by a probabilistic choice based on transition probabil-
ities. As the transition probabilities depend on the changing pheromone values, the probabilistic
beam searches that are performed by this algorithm are also adaptive. We call this new approach
Beam-ACO.

There are basically three design choices to be made when developing a Beam-ACO approach. The
Arst one concerns the lower bound LB(·) that is used to evaluate partial solutions. If no accurate
lower bound that can be computed in an eNcient way can be found, the Beam-ACO approach might
fail. The second design decision concerns the setting of the parameters kbw and kext. Both parameter
values may be static or dynamically changing, depending on the state of the solution construction.
For example, it might be beneAcial to allow more extensions of partial solutions in early stages of
the construction process than in later stages. Finally, the third design decision concerns the possibility
that the set of solution components N(sp) that can be used to extend a partial solution sp might be

3 An inaccurate lower bound might bias the search towards bad areas in the search space.
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eIectively restricted by a pre-selection mechanism. Such a pre-selection mechanism is performed in
procedure PreSelect(N(sp)) of Algorithm 2.

5. Application: open shop scheduling

In order to show the usefulness of our idea we developed a Beam-ACO approach, henceforth
denoted by Beam-ACO-OSS, for the OSS problem [4]. In the Aeld of scheduling, ACO has so far
been successfully applied to the single machine weighted tardiness (SMWT) problem [25], and to
the resource constraint project scheduling (RCPS) problem [26]. However, the application to shop
scheduling problems has proved to be quite diNcult. The earliest ACO algorithm to tackle a shop
scheduling problem was the one by Colorni et al. [27] for the job shop scheduling problem. The
results obtained by this algorithm are quite far from the state-of-the-art. The Arst quite successful
ACO algorithm to tackle shop scheduling problems was proposed in [15]. This algorithm was devel-
oped for the group shop scheduling (GSS) problem [28], which is a very general shop scheduling
problem that includes the How shop (FSS), the job shop (JSS), and the open shop scheduling (OSS)
problem. Despite its generality, this approach achieves—especially for OSS problem instances—good
results. In the following we Arst outline Beam-ACO-OSS, before we show (1) that Beam-ACO-OSS
improves on the results of the currently best standard ACO algorithm [15] (henceforth denoted by
Standard-ACO-OSS), and (2) that Beam-ACO-OSS is a new state-of-the-art algorithm for solving
the existing OSS benchmark instances.

5.1. Open shop scheduling

The OSS problem can be formalized as follows. We consider a Anite set of operations O =
{o1; : : : ; on} which is partitioned into subsets M={M1; : : : ;M|M|}. The operations in Mi ∈M have
to be processed on the same machine. For the sake of simplicity we identify each set Mi ∈M
of operations with the machine they have to be processed on, and call Mi a machine. Set O is
additionally partitioned into subsets J={J1; : : : ;J|J|}, where the set of operations Jj ∈J is called
a job. Furthermore, given is a function p : O→ N+ that assigns processing times to operations. We
consider the case in which each machine can process at most one operation at a time. Operations
must be processed without preemption (that is, once the processing of an operation has started it
must be completed without interruption). Operations belonging to the same job must be processed
sequentially.

A solution is given by permutations �Mi of the operations in Mi, ∀i∈{1; : : : ; |M|}, and permu-
tations �Jj of the operations in Jj, ∀j∈{1; : : : ; |J|}. These permutations deAne processing orders
on all the subsets Mi and Jj. Note that not all combinations of permutations are feasible, because
some combinations of permutations might deAne cycles in the processing orders. As mentioned in
Section 2, a permutation of all the operations represents a solution to an OSS instance. This is
because a permutation of all operations contains the permutations of the operations of each job and
of each machine. In the following we refer to the search space S as the set of all permutations of
all operations.

There are several possibilities to measure the cost of a solution. In this paper we deal with
makespan minimization. Every operation o∈O has a well-deAned earliest starting time tes(o; s) with
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Fig. 2. (a) The disjunctive graph representation [29] of a simple instance of the OSS problem consist-
ing of 10 operations partitioned into 3 jobs, and 4 machines (processing times are omitted in this exam-
ple). Problem speciAcation: O = {o1; : : : ; o10}; J = {J1 = {o1; o2; o3};J2 = {o4; : : : ; o7}; J3 = {o8; o9; o10}},
M = {M1 = {o1; o5; o8}; M2 = {o2; o4; o9}; M3 = {o3; o7}; M4 = {o6; o10}}. The nodes of the graph correspond to
the operations. Furthermore, there are undirected arcs between every pair of operations being in the same job (dotted)
or having to be processed on the same machine (dashed). In order to obtain a solution, the undirected arcs have to be
directed without creating any cycles. This corresponds to Anding permutations of the operations on the machines and in
the jobs such that there are no cycles in the processing orders. (b) A feasible solution to the problem. The undirected
arcs from (a) are directed and the new directed graph does not contain any cycles.

respect to a solution s (respectively, a well-deAned earliest starting time tes(o; sp) with respect to
a partial solution sp). Here we assume that all the operations that do not have any predecessor
have an earliest starting time of 0. Accordingly, the earliest completion time of an operation o∈O
with respect to a solution s is denoted by tec(o; s) and deAned as tes(o; s) + p(o). 4 The same
deAnitions hold for partial solutions. The objective function value f(s) of a feasible solution s (also
called the makespan of s) is given by the maximum of the earliest completion times of all the
operations:

f(s)← max{tec(o; s) | o∈O}: (1)

We aim at minimizing f. An example of an OSS instance is shown as a disjunctive graph in
Fig. 2.

5.2. Beam-ACO-OSS

The algorithmic framework of Beam-ACO-OSS is shown in Algorithm 3. This basic ACO frame-
work works as follows: At each iteration, na ants perform a probabilistic beam search. Hereby, each
ant constructs up to kbw solutions. Then, depending on a measure that is called the convergence fac-
tor and a boolean control variable bs update, an update of the pheromone values is performed. After
that, the convergence factor is recomputed and it is decided if the algorithm has to be restarted. The
algorithm stops when the termination conditions are satisAed. One of the most important ingredients
of an ACO algorithm is the pheromone model. The one that we used is deAned in the following.
Note that this pheromone model was also used for Standard-ACO-OSS in [15].

4 Remember that p(o) is the processing time of an operation o.
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Algorithm 3. Beam-ACO for open shop scheduling (Beam-ACO-OSS)
input: an OSS problem instance
sbs ← NULL, srb ← NULL, cf ← 0, bs update← FALSE
InitializePheromoneValues(T)
while termination conditions not satisAed do
Siter ← ∅
for j ← 1 to na
Siter ←Siter ∪ BeamACOSolutionConstruction(T) {See Section 5.2.1, Algorithm 4}

end for
ApplyLocalSearch(Siter)
sib ← argmin{f(s) | s∈Siter}
if srb= NULL or f(sib)¡f(srb) then srb ← sib
if sbs= NULL or f(sib)¡f(sbs) then sbs ← sib
ApplyPheromoneUpdate(bs update,T,srb,sbs)
cf ← ComputeConvergenceFactor()
if cf ¿ cf limit then

if bs update = TRUE then
ResetPheromoneValues(T)
srb ← NULL
bs update← FALSE

else
bs update← TRUE

end if
end if

end while
output: sbs, the best solution found

De%nition 1. Two operations oi; oj ∈O are called related, if they are either in the same job, or if
they have to be processed on the same machine. The set of operations that is related to an operation
oi is in the following denoted by Ri. Then, the pheromone model consists for each pair of related
operations oi; oj ∈O of a pheromone trail parameter Tij and a pheromone trail parameter Tji. The
value 
ij of pheromone trail parameter Tij encodes the desirability of processing oi before oj,
whereas the value 
ji of pheromone trail parameter Tji encodes the desirability of processing oj
before oi.

The components of Beam-ACO-OSS are outlined in more detail in the following.
InitializePheromoneValues(T): At the start of the algorithm all pheromone values are initialized

to 0.5. 5

ApplyLocalSearch(Siter): To every solution s∈Siter, where Siter is the set of solutions that was
constructed by the ants at the current iteration, we apply a steepest descent local search procedure

5 This is reasonable as our algorithm is implemented in the hyper-cube framework [30,31], which limits the pheromone
values between 0 and 1.
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that is based on the neighborhood structure proposed in [28] for the group shop scheduling
problem. 6

ApplyPheromoneUpdate(bs update;T; srb; sbs): For updating the pheromone values at each itera-
tion we either use the restart best solution srb or the best-so-far solution sbs. The pheromone update
rule is as follows:


ij ← 
ij +  (!(oi; oj; s)− 
ij); ∀Tij ∈T; (2)

where

!(oi; oj; s) =

{
1 if oi is scheduled before oj in s;

0 otherwise
(3)

and  ∈ (0; 1] is a constant called evaporation rate. The solution that is used for updating the
pheromone values depends on the status of the boolean variable bs update. At the (re-)start of
the algorithm it holds that bs update = FALSE, and we set s ← srb. Once the algorithm has con-
verged (which is indicated by cf¿cf limit), the setting changes to bs update = TRUE, and we
set s← sbs until the algorithm has converged again. Then, the algorithm is restarted by resetting all
the pheromone values to 0:5.

Furthermore, we applied an upper bound 
max and a lower bound 
min to the pheromone values
as proposed in [32] for MAX–MIN ant systems (MMASs). This prevents the algorithm from
converging to a solution. 7 For all our experiments we have set the lower bound 
min to 0:001 and
the upper bound 
max to 0:999, as well as cf limit to 0:99. Therefore, after applying the pheromone
update rule above, we check which pheromone values exceed the upper bound, or are below the
lower bound. These pheromone values are then set back to the respective bound.
ComputeConvergenceFactor(): As mentioned above, our ACO algorithm is controlled by a nu-

merical factor that is called the convergence factor, and that is denoted by cf∈ [0; 1]. This factor
is computed as follows:

cf ← 2 ·
((∑

oi∈O
∑

oj∈Ri
max{
max − 
ij; 
ij − 
min}

|T|(
max − 
min)

)
− 0:5

)
: (4)

Therefore, when the algorithm is initialized (or reset) with all pheromone values set to 0:5, then
cf = 0, while when the algorithm has converged, then cf = 1.
ResetPheromoneValues(T): This function sets all the pheromone values back to the constant 0:5.
This concludes the description of the algorithmic framework. In the following we outline the solu-

tion construction mechanism (i.e., function BeamACOSolutionConstruction(T)) of Beam-ACO-OSS.

5.2.1. Solution construction in Beam-ACO-OSS
For constructing solutions we use the mechanism of the list scheduler algorithm [29], which

is a widely used algorithm for constructing feasible solutions to shop scheduling problems. The
list scheduler algorithm starts from the empty partial solution and builds a permutation of all the
operations from left to right by appending at each construction step another operation to the current

6 OSS is a special case of the more general group shop scheduling problem.
7 We say that an ACO algorithm has converged to a solution s if only s has a probability greater than " to be generated

(with " close to zero).
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partial solution (henceforth called scheduling an operation). At each construction step t the current
partial solution spt induces a partition of the set of operations O into the set of operations O−

t =
{oi | oi ∈ spt } and the set of operations O+

t =O\O−
t . In principle, all the operations in O+

t can be used
to extend the partial solution spt . However, if for an operation oi ∈O+

t it holds that Ri ∩ O+
t = ∅, 8

we do not need to consider it as a candidate for extending the current partial solution, because as
no related operations are left, the position of this operation in the Anal permutation is meaningless. 9

Therefore, at each construction step t the set of allowed operations is deAned as follows:

N(spt )← {oi | oi ∈O+
t ; Ri ∩ O+

t 
= ∅}: (5)

In other words, the set of allowed operations consists of all operations that are not scheduled yet,
and at least one related operation is not yet scheduled either. Scheduling an operation oi means
that oi has to be processed before all operations oj ∈Ri ∩ O+. If N(spt ) is empty, the remaining
operations in O+

t are mutually unrelated and a feasible solution is unambiguously deAned. Therefore,
the remaining operations are appended to spt in any order. Using the mechanism of list scheduler
algorithms ensures the feasibility of the constructed solutions.

The transition probabilities for choosing an operation oi ∈N(spt ) at each construction step t are
a function of the pheromone values (see DeAnition 1) and the weights assigned by a weighting
function, which are in ACO algorithms called the heuristic information. The weighting function that
we used is deAned by

	(oi)←
1

tes(oi;s
p
t )+1∑

ok∈N(spt )
1

tes(ok ;s
p
t )+1

; ∀oi ∈N(spt ): (6)

Then, the transition probabilities are deAned by

p(oi |T; 	)← (minoj∈Ri∩O+
t

ij)#	(oi)∑

ok∈N(spt )
(minoj∈Rk∩O+

t

kj)#	(ok)

; ∀oi ∈N(spt ); (7)

where # is a parameter for adjusting the importance that is given to the pheromone informa-
tion, respectively, the heuristic information. The formula above determines the probability for each
oi ∈N(spt ) to be proportional to the minimum of the pheromone values between oi and its related
and unscheduled operations. This is a reasonable choice, because if this minimum is low it means
that there is at least one related operation left that probably should be scheduled before oi.
The algorithmic framework of the solution construction is shown in Algorithm 4. Following the

solution construction mechanism as outlined above, each ant performs a probabilistic beam search.
The only component of Algorithm 3 that does not appear in the algorithmic framework of beam
search as shown in Algorithm 2 is the procedure ReduceToRelated(N(spt ); oi). This procedure is
used to restrict set N(spt ) after the Arst extension of a partial solution spt was performed. Assuming
that the Arst extension of spt was done by adding operation oi, the restriction is done as follows:

N(spt )← {oj ∈N(spt ) | oj ∈Ri}: (8)

8 Remember that Ri is the set of operations that are related to operation oi.
9 Consider for example the partial solution 〈o1; o2; o3; o4; o5; o6〉 to the problem instance that is shown in Fig. 2. With

respect to this partial solution, operation o7 is not scheduled yet and all the operations that are related to o7 are already
scheduled. Therefore, the place of operation o7 in the Anal permutation does not change the Anal solution, because it will
in any way be the last operation on its machine and the last operation of its job.
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This means that all further extensions of spt have to be performed with operations that are related to
the operation that was chosen for the Arst extension. The reason is that we want to ensure that all
the diIerent extensions of a partial solution result in diIerent feasible solutions when completed. In
other words, this restriction avoids building the same solution more than once. 10 Accordingly, in the
Arst construction step there are |O| possible extensions and in every further construction step there
are maximally (maxMi∈M|Mi|+maxJj∈J|Jj|) allowed extensions of the current partial solution.

Algorithm 4. Beam-ACO solution construction for the OSS problem
input: an empty partial solution sp1 = 〈〉, beam width kbw, max. number of extensions kext
B← {sp1 }, Bc ← ∅, t ← 1
while B 
= ∅ do
Bext ← ∅
for spt ∈B do
count ← 1
N(spt )← PreSelect(N(spt ))
while count6 kext AND N(spt ) 
= ∅ do
Choose oi ∈N(spt ) with transition probability p(oi |T; 	) {see Equation 7}
spt+1 ← extend spt by appending operation oi
N(spt )←N(spt ) \ {oi}
if N(spt+1) 
= ∅ then
Bext ← Bext ∪ {spt+1}

else
Bc ← Bc ∪ {spt+1}

end if
if count = 1 then
N(spt )← ReduceToRelated(N(spt ); oi)

end if
count ← count + 1

end while
end for

Rank the partial solutions in Bext using a lower bound LB(·)
B← select the min{kbw; |Bext|} highest ranked partial solutions from Bext

k ← k + 1
end while
output: a set of feasible solutions Bc

In order to specify the remaining components of the solution construction process we need to make
three design choices as outlined in Section 4: (1) The deAnition of a lower bound LB(·) to evaluate
partial solutions, (2) the setting of the beam width kbw and the maximum number of extensions kext

10 Consider for example the empty partial solution 〈〉 with respect to the example instance shown in Fig. 2. In the Arst
construction step every operation is a candidate for being added to 〈〉. Now, consider two of the possible extensions,
namely 〈o1〉 and 〈o4〉. Note that o1 and o4 are not related. Therefore, both partial solutions can be completed (e.g.,
〈o1; o4; o2; : : : ; o10〉 and 〈o4; o1; o2; : : : ; o10〉) such that the Anal permutations are the same solutions. This is avoided by
using function ReduceToRelated(N(spt ),oi).
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of a partial solution, and (3) the speciAcation of a pre-selection mechanism for Altering the set of
solution components that can be used to extend a partial solution. In the following we focus on
these three design decisions.
The lower bound LB(·): In the following we denote the operation of a job Jj ∈J that was taken

latest into a partial schedule spt by oJj . Similarly, we denote the operation of a machine Mi ∈M
that was taken latest into the partial schedule spt by oMi . Furthermore, the partition of the set of
operations O with respect to a partial solution spt into O−

t (the operations that are already scheduled)
and O+

t (the operations that still have to be dealt with) induces a partition of the operations of every
job Jj ∈J into J−

jt and J+
jt and of every machine Mi ∈M into M−

it and M+
it . Then, the lower

bound LB(·) is for a partial solution spt computed as follows:

LB(spt )← max{X; Y}; (9)

where

X = max
Jj∈J


tec(oJj ; spt ) +

∑
o∈J+

jt

p(o)


 ; (10)

Y = max
Mi∈M


tec(oMi ; spt ) +

∑
o∈M+

it

p(o)


 ; (11)

Therefore, lower bound LB(·) consists of summing for every job and machine the processing times
of the unscheduled operations, adding the earliest completion time of the operation of the respective
job or machine that was scheduled last, and taking the maximum of all these numbers. As all the
necessary numbers can be obtained and updated during the construction process, this lower bound
can be very eNciently computed.
The pre-selection mechanism PreSelect(N(spt )): For Altering set N(spt ) we can use the mech-

anisms that are available to restrict set O+
t at each step in the list scheduler algorithm. There are

basically two ways of restricting set O+
t . The one proposed by GiPer and Thompson [29] works as

shown in Algorithm 5. First, the minimal earliest completion time t∗ of all the operations in O+
t is

calculated. Then, one of the machines M∗ with minimal earliest completion time is chosen and O+
t

is restricted to all operations that need to be processed on machine M∗ and whose earliest possible
starting time is smaller than t∗. This way of restricting set O+

t produces active schedules. 11

Algorithm 5. GiPer and Thompson mechanism for restricting O+
t

input: spt , O+
t

Determine t∗ ← min{tec(o; spt ) | o∈O+
t }

M∗ ← Select randomly from {Mi ∈M |M+
it ∩ 
= ∅; ∃ o∈M+

it with tec(o; s
p
t ) = t∗}

O+
t ← {o∈O+

t | o∈M∗ and tes(o; s
p
t )¡t∗}

output: restricted set O+
t

11 The set of active schedules is a subset of the set of feasible schedules. An optimal solution is guaranteed to be an
active schedule.



14 C. Blum /Computers & Operations Research ( ) –

ARTICLE IN PRESS

Algorithm 6. Non-delay mechanism for restricting O+
t

input: spt , O+
t

Determine t∗ ← min{tes(o; spt ) | o∈O+
t }

O+
t ← {o∈O+

t | tes(o; spt ) = t∗}
output: restricted set O+

t

The second major way of restricting set O+
t is the non-delay mechanism that is shown in

Algorithm 6. First, the earliest possible starting time t∗ among all operations in O+
t is determined.

Then O+
t is restricted to all operations that can start at time t∗. By this way of restricting set Ot ,

non-delay schedules 12 are generated.
After restricting set O+

t , the restriction of N(spt ) is achieved by removing all operations oi with
oi 
∈ O+

t . Based on these two ways of restricting set O+
t we decided to explore the following 4

pre-selection mechanisms: (1) No restriction of O+
t at all (henceforth denoted by NR), (2) restriction

of O+
t due to GiPer and Thompson (henceforth denoted by GT), (3) restriction of O+

t by the
non-delay method (henceforth denoted by ND), and (4) a combination of (2) and (3) that is achieved
by choosing at each construction step randomly between (2) and (3) for restricting O+

t (henceforth
denoted by GT-ND).
Strategies for setting kbw and kext: In order to And out if rather high or rather low settings

of kbw are required, we decided to test two diIerent settings of kbw, which both depend on the
problem instance size. These settings are kbw = |O|, and kbw = max{1; �|O|=10�}. Furthermore, we
decided to test two diIerent strategies for setting kext, the maximal number of extensions of a partial
solution. In the Arst strategy, kext is set to half of the number of possible extensions of a partial
solution spt . Therefore, the setting is kext = max{1; �|N(spt )|=2�}. Note that this setting depends at
each construction step on the current partial solution. The second strategy is based on an idea from
limited discrepancy search (LDS) [33]. The idea is that a constructive mechanism that is guided by
some policy is more likely to make wrong decisions at early stages of the construction process rather
than later. Based on this idea we set kext to |N(spt )| for construction steps t6max{1; �|O|=20�}.
Once t has passed this limit, we set kext to 2. This limit is quite arbitrary. However, it is our aim
to And out if this idea works, rather than to And the optimal limit. The Arst strategy for setting kext
is in the following denoted by MED, whereas the second strategy is denoted by LDS.

It is interesting to note that if the beam width kbw and the maximal number of extensions kext are
big enough, Beam-ACO-OSS is an (ineNcient) enumeration method. On the other extreme, if kbw
and kext are set to 1, Beam-ACO-OSS is a standard ACO algorithm where each ant constructs one
solution per iteration.

6. Experimental evaluation

All the results that we present in this section were obtained on PCs with AMD Athlon 1100 Mhz
CPU running under Linux. The software was developed in C++ (gcc version 2.96). Furthermore,
Beam-ACO-OSS is based on the same implementation (i.e., the data structures and the local search)
as Standard-ACO-OSS, which was proposed in [15].

12 The set of non-delay schedules is a subset of the set of active schedules.
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6.1. Benchmark instances

There are three diIerent sets of OSS benchmark instances available in the literature. The Arst
set consists of 60 problem instances provided by Taillard [34] (denoted by tai *). The smallest
of these instances consist of 16 operations (4 jobs and 4 machines), and the biggest instances
consist of 400 operations (20 jobs and 20 machines). Furthermore, we performed tests on 35 of the
diNcult OSS instances provided by Brucker et al. [35] (denoted by j*). The number after the letter
j denotes the size of the instance. So for example the j5-* instances are on 5 jobs and 5 machines,
and the j8-* instances on 8 jobs and 8 machines. Finally, we applied Beam-ACO-OSS (as well
as Standard-ACO-OSS, which was not applied to this benchmark set before) to the 80 benchmark
instances provided by GuReret and Prins [36] (denoted by gp*). The size of these instances ranges
from 3 jobs and 3 machines to 10 jobs and 10 machines. Also this third benchmark set was generated
in order to be diNcult to solve.

6.2. Parameter settings

In general, many parameters in Beam-ACO-OSS may be considered for parameter tuning. How-
ever, we decided to focus on the parameters of the solution construction, rather than on the param-
eters of the ACO framework. Therefore, we adopted the parameter settings  =0:1, and #=10 (see
Eq. 7) from Standard-ACO-OSS. Furthermore, we applied Beam-ACO-OSS in all experiments with
only one ant per iteration. This is reasonable, as one ant—in contrast to ants in standard ACO
algorithms –constructs a number of solutions that depends on the beam width kbw.

Recall that there are three parameters to be set in the solution construction mechanism of
Beam-ACO-OSS. We have to decide the beam width kbw (|O| or |O|=10). Then, we have to de-
cide between the two strategies MED and LDS for setting the maximal extension number kext. A
third parameter is the pre-selection mechanism, where we have the four options GT, GT-ND, ND
and NR as outlined in the previous section. Therefore, we have two parameters with two possible
values each, and one parameter with four possible values. We tested every combination of the pa-
rameter values (16 diIerent settings) on two diIerent OSS benchmark instances: j7-per0-0, a diNcult
instance from [35], and tai 10x10 1 from [34]. The results are shown in numerical form in Table 1,
and in graphical form in Fig. 3.

The results allow us to draw the following conclusions: In general, strategy LDS for setting the
maximal extension number kext outperforms strategy MED on both problem instances. Second, the
use of beam width kbw = |O| in general outperforms the setting kbw = �|O|=10�. For the pre-selection
mechanisms that we used we can observe that GT and GT-ND work well for problem instance
j7-per0-0, whereas GT-ND and ND work very well and much better than the other two settings for
problem instance tai 10x10 1. This conArms an observation from [15], that for solving the problem
instances by Taillard [34] a strong use of the non-delay mechanism is crucial. Based on these results
we chose the parameter settings kbw = |O|, LDS, and GT-ND for all further experiments.
Furthermore, we wanted to explore the inHuence that the pheromone update and the local search

have on the performance of Beam-ACO-OSS. Therefore, we tested four versions of Beam-ACO-OSS
on several problem instances. In the following, the notation Beam-ACO-OSS without any further
speciAcations refers to the algorithm version with pheromone update and local search. The four
versions that we tested are (1) Beam-ACO-OSS, (2) Beam-ACO-OSS without pheromone update,
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Table 1
The table gives the results of Beam-ACO-OSS with diIerent parameter settings (as speciAed in the Arst column) for two
diIerent OSS benchmark instances

Parameter speciAcation Beam-ACO-OSS Rank

Average St

(a) Results for instance j7-per0-0. Time limit: 490 s
GT, LDS, kbw = |O| 1053.9 130.409 3
GT, LDS, kbw = �|O|=10	 1057.25 315.194 6
GT, MED, kbw = |O| 1063.95 247.205 12
GT, MED, kbw = �|O|=10	 1062.6 181.918 11
GT-ND, LDS, kbw = |O| 1052.3 275.541 1
GT-ND, LDS, kbw = �|O|=10	 1053.7 198.789 2
GT-ND, MED, kbw = |O| 1060.15 228.788 9
GT-ND, MED, kbw = �|O|=10	 1056.55 184.168 5
ND, LDS, kbw = |O| 1071 14.881 14.5
ND, LDS, kbw = �|O|=10	 1071 30.879 14.5
ND, MED, kbw = |O| 1071 55.11 14.5
ND, MED, kbw = �|O|=10	 1071 61.243 14.5
NR, LDS, kbw = |O| 1056.35 277.12 4
NR, LDS, kbw = �|O|=10	 1058.9 233.741 8
NR, MED, kbw = |O| 1057.45 215.865 7
NR, MED, kbw = �|O|=10	 1060.35 248.196 10

Results for instance tai 10x10 1. Time limit: 100 s
GT, LDS, kbw = |O| 646.049 55.36 10
GT, LDS, kbw = �|O|=10	 655.649 52.652 14
GT, MED, kbw = |O| 654.2 52.301 13
GT, MED, kbw = �|O|=10	 658.799 46.231 16
GT-ND, LDS, kbw = |O| 637.35 37.842 3
GT-ND, LDS, kbw = �|O|=10	 639.5 48.223 5
GT-ND, MED, kbw = |O| 641.549 40.359 7
GT-ND, MED, kbw = �|O|=10	 643.75 50.969 8
ND, LDS, kbw = |O| 637 10.856 1
ND, LDS, kbw = �|O|=10	 637.2 21.554 2
ND, MED, kbw = |O| 639.299 40.71 4
ND, MED, kbw = �|O|=10	 640.1 47.964 6
NR, LDS, kbw = |O| 645.799 28.41 9
NR, LDS, kbw = �|O|=10	 649.399 53.384 12
NR, MED, kbw = |O| 648.149 49.725 11
NR, MED, kbw = �|O|=10	 656.049 50.853 15

The second column of each table provides the average of the best solution values obtained in 20 runs of the algorithm.
The third column gives the average computation time that was needed to obtain the best solution of a run. Finally, in the
last column of each table, we have ranked the diIerent parameter settings according to the average of the best solution
values that are given in the second column.

(3) Beam-ACO-OSS without local search, and (4) Beam-ACO-OSS without pheromone update and
without local search. The results are shown in the two subtables of Table 2. First, we applied the
four versions of Beam-ACO-OSS to the nine instances j7-* of the set of benchmark instances by
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Fig. 3. The x-axis and the y-axis deAne diIerent parameter settings of Beam-ACO-OSS. On the x-axis are the pre-selection
mechanisms, on the y-axis the strategies for setting kext , and the z-axis shows the percentage above the best known solution
value of the average solution quality obtained in 20 runs of Beam-ACO-OSS with the parameter settings as speciAed on
the x- and y-axis. (a) and (b) show the results for instance j7-per0-0 (490 s per run), which is a diNcult OSS problem
instance from the benchmark set provided by Brucker et al. [35]. The results in (a) are obtained with kbw = �|O|=10	,
whereas the results in (b) are obtained with kbw=|O|. (c) and (d) show in the same way the results for instance tai 10x10 1
(100 s per run) from the benchmark set provided by Taillard [34]. The legends of the four graphs indicate the “height”
of the contour lines given on the x-y plane (i.e., give a contour map of the performance surface).

Brucker et al. [35]. The results are shown in Table 2(a). The Arst observation is that although the two
versions with pheromone update are always better or equal to the two versions without pheromone
update, the diIerences between all four versions are quite small. This indicates the power of using
a probabilistic beam search mechanism to construct solutions in the way that we have proposed
it. In a second series of experiments we applied the four versions of Beam-ACO-OSS to the ten
problem instances gp * of the benchmark set by GuReret and Prins [36] (see Table 2(b)). Again,
the results show that the algorithm versions that use pheromone update are—with the exceptions of
gp10-05 in terms of average solution quality obtained and of gp10-09 in terms of the best solution
value found—slightly better than the other two versions. Furthermore, it is interesting to note that
Beam-ACO-OSS without using the local search procedures seems to have slight advantages over
Beam-ACO-OSS. However, as this is not the case for the more diNcult j7-* instances we decided
for the local search procedures to remain in Beam-ACO-OSS.
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Table 2
Results that show the inHuence of the pheromone update and the local search on the performance of Beam-ACO-OSS

Beam-ACO-OSS No update No LS No update, no LS

Instance Best Average St Best Average St Best Average St Best Average St

(a) Results for instances j7-*. Time limit: 490 s.
j7-per0-0 1048 1052.7 207.861 1050 1055.5 195.352 1048 1052.65 195.159 1050 1054.1 198.427
j7-per0-1 1057 1057.8 91.525 1058 1060.65 180.417 1057 1057.8 204.527 1057 1062.5 250.786
j7-per0-2 1058 1058.95 175.811 1058 1060.6 283.548 1058 1059.25 200.015 1058 1061.5 221.754
j7-per10-0 1013 1016.7 217.538 1016 1020.6 193.229 1013 1016.7 213.639 1017 1021.65 196.848
j7-per10-1 1000 1002.45 189.808 1005 1008 194.152 1001 1003.9 163.473 1006 1008.65 257.29
j7-per10-2 1016 1019.4 180.616 1019 1020.9 193.668 1016 1019.75 180.274 1016 1021.6 278.139
j7-per20-0 1000 1000 0.376 1000 1000 0.464 1000 1000 0.343 1000 1000 0.44
j7-per20-1 1005 1007.6 259.014 1006 1012.05 235.128 1006 1009.35 231.489 1009 1013.85 297.337
j7-per20-2 1003 1007.25 257.234 1004 1009.4 146.411 1004 1006.65 308.064 1006 1009.85 179.933

(b) Results for instances gp10 *. Time limit: 1000 s.
gp10-01 1099 1108.95 567.483 1108 1117.95 405.615 1101 1110.65 670.663 1108 1117.35 372.649
gp10-02 1101 1107.4 501.614 1101 1110.85 452.031 1099 1106.4 448.307 1102 1113.1 497.755
gp10-03 1082 1097.95 658.609 1090 1107.65 504.711 1081 1098.35 657.958 1090 1106.15 419.832
gp10-04 1093 1096.6 588.077 1094 1098.75 547.384 1089 1096.85 482.128 1094 1098.5 428.987
gp10-05 1083 1092.4 636.339 1082 1091.5 494.88 1080 1092.55 644.123 1084 1096.5 510.382
gp10-06 1088 1104.55 595.407 1079 1104.25 455.487 1079 1100.65 504.417 1096 1104.7 622.282
gp10-07 1084 1091.45 389.504 1087 1096.65 617.419 1087 1092.25 586.355 1087 1098.1 473.85
gp10-08 1099 1104.8 615.811 1098 1105.25 477.025 1098 1104.45 675.911 1100 1108.2 527.71
gp10-09 1121 1128.7 554.427 1120 1129.4 441.591 1121 1130.85 469.464 1127 1131.5 619.756
gp10-10 1097 1106.65 562.495 1102 1111.35 516.68 1098 1107.6 502.204 1100 1109.6 517.052

The table is organized as follows: the Arst column speciAes the problem instance. Then, there are three columns for
each of the four diIerent versions of Beam-ACO-OSS, that are (1) Beam-ACO-OSS with pheromone update and local
search, (2) without pheromone update, (3) without local search, and (4) without update and without local search. The
Arst of the three respective columns gives the best solution found in 20 runs. An objective function value is in bold, if
it beats the other three algorithm versions. In case of ties the average solution quality decides. The second column gives
the average of the best solutions found in 20 runs, and the third column gives the average CPU time that was needed to
And the best solutions in the 20 runs.

6.3. Results

The state-of-the-art metaheuristics for the OSS problem are on one side the hybrid genetic algo-
rithm by Liaw [16] (henceforth denoted by GA-Liaw), and the best of the genetic algorithms from
the paper [17] by Prins (henceforth denoted by GA-Prins). However, GA-Liaw was only applied to
the Taillard instances and to a subset of the Brucker instances, whereas GA-Prins was applied to all
available OSS benchmark instances. These are the algorithms—besides Standard-ACO-OSS [15]—to
which we compare Beam-ACO-OSS.

We compare Beam-ACO-OSS to GA-Liaw and GA-Prins only in terms of the best solution values
found. The reason is that both GA-Liaw and GA-Prins were only applied once to each problem
instance. Therefore, average results do not exist for these two approaches. In addition, for the
following reasons the computation times of Beam-ACO-OSS are not directly comparable to the
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computation times of GA-Liaw and GA-Prins. Firstly, the meaning of the computation times is
diIerent. While Beam-ACO-OSS is stopped with respect to a maximum computation time limit,
GA-Liaw is stopped when either a maximum number of iterations is reached or the optimal solution
is found, whereas GA-Prins is stopped when either a maximum number if iterations is reached,
12 000 iterations are performed without improvement, or if a lower bound is reached. Accordingly,
the reported computation times have a diIerent meaning. While for Beam-ACO-OSS we report for
each problem instance the average time when the best solution value of a run was found, Liaw
and Prins report on the time their algorithm was stopped. Secondly, computation times for GA-Prins
were given in [17] only as averages over sets of benchmark instances which include very small as
well as very big instances.

Furthermore, the comparison of the computation times might not be very meaningful due to
potentially quite diIerent implementations of the algorithms and diIerent computational platforms.
While the results of Beam-ACO-OSS were obtained from a C++ programme running under Linux
on a 1100 MHz PC, the results of GA-Prins as reported in [17] were obtained from a Turbo Pascal
programme running under Windows on a 166 MHz PC, and the results of GA-Liaw as reported
in [16] were obtained from a C programme running on a 266 MHz PC. However, in general the
computation times of all three algorithms are quite low. To our opinion the performance of an
algorithm is therefore of higher importance. (i.e., as long as the computation times are within a few
minutes it is to our opinion reasonable to prefer an algorithm that obtains better solution qualities).

Our test results are shown in Tables 3–5. The format of these tables is as follows: In the Arst
column we give the name of the problem instance. In the second column we give the best objective
function value that is known for the corresponding instance. Brackets refer to the fact that the
value is not proved to be the optimal solution value. Furthermore, if there is a right-to-left arrow
pointing to the best known value, it means that this value was improved by either Beam-ACO-OSS
or Standard-ACO-OSS. Then, there are two columns where we give the best solution values found
by GA-Liaw, respectively, GA-Prins. Furthermore, there are twice four columns for displaying the
results of Beam-ACO-OSS, respectively, Standard-ACO-OSS. In the Arst one of these four columns
we give the value of the best solution found in 20 runs of the algorithm. The second one gives
the average of the values of the best solutions found in 20 runs. In the third column we give the
standard deviation of the average given in the second column, and in column 4 we note the average
time that was needed to And the best solutions in the 20 runs. Finally, the last column of each of
the three tables gives the CPU time limit for Beam-ACO-OSS and Standard-ACO-OSS. A value in
a column about the best solution values found is indicated in bold, if it is the best in the comparison
between Beam-ACO-OSS and Standard-ACO-OSS. Ties are broken by using the average solution
quality as a second criterion. Finally, an asterisk marking a value refers to the fact that this value
is equal to the best known solution value for the respective problem instance.

We have set the CPU time limits for Beam-ACO-OSS when applied to the Taillard instances
to |O| seconds, and to 10 · |O| seconds when applied to the Brucker et al. instances, respectively
the GuReret and Prins instances. The reason for allowing a higher time limit for the application
to the latter instances is that they were designed to be more diNcult to solve than the Taillard
instances. The only exception to this scheme are the CPU time limits for the application to the
Taillard instances on 25, respectively, 49, operations, where we have set the CPU time limit to
2 · |O| seconds, because historically most of the existing approaches had more diNculties to solve
these instances in comparison to the other Taillard instances.
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Table 3
Results for the OSS benchmark instances provided by Taillard [34].

Best GA-Liaw GA-Prins Beam-ACO-OSS Standard-ACO-OSS [15] Time limits(s)
known [14] [17]

Instance Best Average
√
* St Best Average

√
* St

tai 4x4 1 193 ∗193 ∗193 ∗193 193 0 0.095 ∗193 193.199 0.615 5.08 16
tai 4x4 2 236 ∗236 239 ∗236 236 0 0.105 ∗236 238.25 1.332 1.381 16
tai 4x4 3 271 ∗271 ∗271 ∗271 271 0 0.177 ∗271 271 0 0.603 16
tai 4x4 4 250 ∗250 ∗250 ∗250 250 0 0.291 ∗250 250.4 0.82 5.984 16
tai 4x4 5 295 ∗295 ∗295 ∗295 295 0 0.043 ∗295 295 0 2.771 16
tai 4x4 6 189 ∗189 ∗189 ∗189 189 0 0.061 ∗189 189 0 0.385 16
tai 4x4 7 201 ∗201 ∗201 ∗201 201 0 0.152 ∗201 201.099 0.447 5.958 16
tai 4x4 8 217 ∗217 ∗217 ∗217 217 0 0.008 ∗217 217 0 0.02 16
tai 4x4 9 261 ∗261 ∗261 ∗261 261 0 0.025 ∗261 261 0 0.127 16
tai 4x4 10 217 ∗217 221 ∗217 217 0 0.814 ∗217 217 0 2.216 16

tai 5x5 1 300 ∗300 301 ∗300 300 0 2.129 ∗300 300.399 0.502 19.623 50
tai 5x5 2 262 ∗262 263 ∗262 262 0 0.398 ∗262 262.899 1.372 22.513 50
tai 5x5 3 323 ∗323 335 ∗323 323 0 0.904 ∗323 328.55 2.91 16.409 50
tai 5x5 4 310 ∗310 316 ∗310 310 0 13.014 311 312.85 1.225 21.824 50
tai 5x5 5 326 ∗326 330 ∗326 326 0 2.037 ∗326 329.1 1.41 15.469 50
tai 5x5 6 312 ∗312 ∗312 ∗312 312 0 2.167 ∗312 312 0 1.816 50
tai 5x5 7 303 ∗303 308 ∗303 303 0 1.146 ∗303 305.35 1.755 9.816 50
tai 5x5 8 300 ∗300 304 ∗300 300 0 3.128 301 301.85 0.988 16.127 50
tai 5x5 9 353 ∗353 358 ∗353 353 0 3.854 356 356 0 10.075 50
tai 5x5 10 326 ∗326 328 ∗326 326 0 0.795 ∗326 327.3 0.978 10.502 50

tai 7x7 1 435 ∗435 436 ∗435 435 0 2.044 ∗435 436.55 1.276 51.353 98
tai 7x7 2 443 ∗443 447 ∗443 443 0 19.133 ∗443 446.55 1.276 36.683 98
tai 7x7 3 468 ∗468 472 ∗468 468 0 15.944 471 474.85 2.433 36.59 98
tai 7x7 4 463 ∗463 ∗463 ∗463 463 0 1.601 ∗463 464.449 1.316 51.732 98
tai 7x7 5 416 ∗416 417 ∗416 416 0 2.291 ∗416 416.05 0.223 33.182 98
tai 7x7 6 451 ∗451 455 ∗451 451.35 0.745 24.794 455 455.85 1.871 46.768 98
tai 7x7 7 422 ∗422 426 ∗422 422.149 0.489 22.942 424 427.1 2.149 46.64 98
tai 7x7 8 424 ∗424 ∗424 ∗424 424 0 1.128 ∗424 424.3 0.47 47.821 98
tai 7x7 9 458 ∗458 ∗458 ∗458 458 0 1.058 ∗458 458 0 30.932 98
tai 7x7 10 397 ∗398 ∗398 ∗398 398 0 1.592 ∗398 398.149 0.489 25.861 98

tai 10x10 1 637 ∗637 ∗637 ∗637 637.35 0.587 40.709 ∗637 642.549 3.017 53.113 100
tai 10x10 2 588 ∗588 ∗588 ∗588 588 0 2.934 ∗588 589.149 1.182 57.908 100
tai 10x10 3 598 ∗598 ∗598 ∗598 598 0 27.81 599 603.85 2.3 61.51 100
tai 10x10 4 577 ∗577 ∗577 ∗577 577 0 2.571 ∗577 577.25 0.55 32.374 100
tai 10x10 5 640 ∗640 ∗640 ∗640 640 0 8.515 ∗640 643.149 1.98 54.22 100
tai 10x10 6 538 ∗538 ∗538 ∗538 538 0 2.504 ∗538 538.1 0.307 23.507 100
tai 10x10 7 616 ∗616 ∗616 ∗616 616 0 5.188 ∗616 617.85 1.694 33.579 100
tai 10x10 8 595 ∗595 ∗595 ∗595 595 0 14.923 ∗595 598.049 1.959 32.198 100
tai 10x10 9 595 ∗595 ∗595 ∗595 595 0 5.043 ∗595 596 1.376 58.235 100
tai 10x10 10 596 ∗596 ∗596 ∗596 596 0 7.448 ∗596 598.299 1.976 52.249 100

tai 15x15 1 937 ∗937 ∗937 ∗937 937 0 14.205 ∗937 937.549 0.825 90.608 225
tai 15x15 2 918 ∗918 ∗918 ∗918 918 0 21.033 ∗918 919.95 1.316 120.623 225
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Table 3 (continued)

Best GA-Liaw GA-Prins Beam-ACO-OSS Standard-ACO-OSS [15] Time limits(s)
known [14] [17]

Instance Best Average
√
* St Best Average

√
* St

tai 15x15 3 871 ∗871 ∗871 ∗871 871 0 14.258 ∗871 871.45 0.998 86.208 225
tai 15x15 4 934 ∗934 ∗934 ∗934 934 0 14.17 ∗934 934.149 0.366 76.606 225
tai 15x15 5 946 ∗946 ∗946 ∗946 946 0 24.699 ∗946 947.299 1.26 101.29 225
tai 15x15 6 933 ∗933 ∗933 ∗933 933 0 16.511 ∗933 933.299 0.571 84.331 225
tai 15x15 7 891 ∗891 ∗891 ∗891 891 0 20.945 ∗891 893.299 2.105 141.311 225
tai 15x15 8 893 ∗893 ∗893 ∗893 893 0 14.192 ∗893 893.1 0.307 61.067 225
tai 15x15 9 899 ∗899 ∗899 ∗899 899.649 1.136 104.09 902 907.1 2.77 137.908 225
tai 15x15 10 902 ∗902 ∗902 ∗902 902 0 18.083 ∗902 904.45 2.235 129.507 225

tai 20x20 1 1155 ∗1155 ∗1155 ∗1155 1155 0 54.805 ∗1155 1157.3 1.38 215.132 400
tai 20x20 2 1242 1241 ∗1241 ∗1241 1241 0 79.646 1247 1248.8 1.794 191.11 400
tai 20x20 3 1257 ∗1257 ∗1257 ∗1257 1257 0 48.527 ∗1257 1257.4 0.68 179.83 400
tai 20x20 4 1248 ∗1248 ∗1248 ∗1248 1248 0 49.025 ∗1248 1248.25 0.55 229.548 400
tai 20x20 5 1256 ∗1256 ∗1256 ∗1256 1256 0 49.073 ∗1256 1256.65 0.988 197.81 400
tai 20x20 6 1204 ∗1204 ∗1204 ∗1204 1204 0 49.292 ∗1204 1205.7 1.08 174.52 400
tai 20x20 7 1294 ∗1294 ∗1294 ∗1294 1294 0 64.963 1296 1299.75 2.048 214.879 400
tai 20x20 8 1169← 1177 1171 ∗1169 1170.25 1.482 227.825 1177 1180.95 2.163 189.277 400
tai 20x20 9 1289 ∗1289 ∗1289 ∗1289 1289 0 48.594 ∗1289 1289.35 0.587 193.639 400
tai 20x20 10 1241 ∗1241 ∗1241 ∗1241 1241 0 48.787 ∗1241 1241.15 0.366 122.736 400

For an explanation of the table format see Section 6.3.

6.3.1. Results for the Taillard instances (Table 3)
The results show a clear advantage of Beam-ACO-OSS over Standard-ACO-OSS. Beam-ACO-OSS

is the Arst algorithm that solves all the Taillard instances to optimality. 13 The only problem instance
that was to our knowledge not solved before is tai 20x20 8, and Beam-ACO-OSS is the Arst algo-
rithm that solves this problem instance. Beam-ACO-OSS obtains for 55 of the 60 problem instances a
standard deviation of 0, and in comparison to Standard-ACO-OSS we observe a substantial reduction
in CPU time. On the small problem instances (tai 4x4 *) Beam-ACO-OSS is about 10 times faster
than Standard-ACO-OSS, whereas on the biggest problem instances (tai 20x20 *) Beam-ACO-OSS
is about twice as fast as Standard-ACO-OSS.

Concerning the comparison of Beam-ACO-OSS to the two GA algorithms, we can observe that
GA-Liaw is only slightly worse than Beam-ACO-OSS on this benchmark set. GA-Liaw solves 58 of
the 60 benchmark instances to optimality. However, it was not able to solve two of the largest bench-
mark instances. Furthermore, GA-Prins is clearly inferior to the other methods on this benchmark
set, with major diNculties to solve the problem instances tai 5x5 * and tai 7x7 *.

13 We can be sure of this due to the fact that all the results obtained by Beam-ACO-OSS are equal to the values of
lower bounds.
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Table 4
Results for the OSS benchmark instances provided by Brucker et al. [35]

Best GA-Liaw GA-Prins Beam-ACO-OSS Standard-ACO-OSS [15] Time limit(s)
known [16] [17]

Instance Best Average
√
* St Best Average

√
* St

j5-per0-0 1042 ∗1042 1050 ∗1042 1042 0 0.298 ∗1042 1042 0 35.526 250
j5-per0-1 1054 ∗1054 ∗1054 ∗1054 1054 0 0.036 ∗1054 1054 0 0.181 250
j5-per0-2 1063 ∗1063 1085 ∗1063 1063 0 0.633 ∗1063 1063 0 39.913 250
j5-per10-0 1004 ∗1004 ∗1004 ∗1004 1004 0 0.799 ∗1004 1004 0 10.492 250
j5-per10-1 1002 ∗1002 ∗1002 ∗1002 1002 0 9.162 ∗1002 1003.65 1.531 65.026 250
j5-per10-2 1006 ∗1006 ∗1006 ∗1006 1006 0 0.195 ∗1006 1006 0 25.519 250
j5-per20-0 1000 ∗1000 1004 ∗1000 1000 0 0.1 ∗1000 1000 0 7.435 250
j5-per20-1 1000 ∗1000 ∗1000 ∗1000 1000 0 0.042 ∗1000 1000 0 0.116 250
j5-per20-2 1012 ∗1012 ∗1012 ∗1012 1012 0 0.639 ∗1012 1012 0 0.192 250

j6-per0-0 1056 ∗1056 1080 ∗1056 1056 0 27.331 1061 1076.25 6.348 100.176 360
j6-per0-1 1045 ∗1045 ∗1045 ∗1045 1049.7 5.027 61.246 ∗1045 1048.7 4.366 157.417 360
j6-per0-2 1063 ∗1063 1079 ∗1063 1063 0 38.786 1070 1077.4 3.377 59.74 360
j6-per10-0 1005 ∗1005 1016 ∗1005 1005 0 10.563 ∗1005 1020.3 5.202 120.515 360
j6-per10-1 1021 ∗1021 1036 ∗1021 1021 0 11.253 ∗1021 1022.8 4.708 141.272 360
j6-per10-2 1012 ∗1012 ∗1012 ∗1012 1012 0 1.346 ∗1012 1012 0 3.891 360
j6-per20-0 1000 ∗1000 1018 ∗1000 1003.6 1.231 31.027 1004 1008.15 3.013 122.246 360
j6-per20-1 1000 ∗1000 ∗1000 ∗1000 1000 0 0.703 ∗1000 1000 0 32.749 360
j6-per20-2 1000 ∗1000 1001 ∗1000 1000 0 3.817 ∗1000 1000 0 17.108 360

j7-per0-0 (1048) 1063 1071 ∗1048 1052.7 2.386 207.861 1070 1071.5 2.039 231.353 490
j7-per0-1 1055 1058 1076 1057 1057.8 0.41 91.525 1069 1071.2 1.239 130.989 490
j7-per0-2 1056 1059 1082 1058 1058.95 1.276 175.811 1070 1075.25 2.244 196.487 490
j7-per10-0 1013 1022 1036 ∗1013 1016.7 2.451 217.538 1034 1036.05 1.571 163.698 490
j7-per10-1 1000 1014 1010 ∗1000 1002.45 2.459 189.808 1006 1006 0 33.213 490
j7-per10-2 1011 1020 1035 1016 1019.4 2.01 180.616 1032 1032.95 1.503 196.708 490
j7-per20-0 1000 ∗1000 ∗1000 ∗1000 1000 0 0.376 ∗1000 1000 0 3.371 490
j7-per20-1 1005 1011 1030 ∗1005 1007.6 2.233 259.014 1015 1016.55 1.394 156.09 490
j7-per20-2 1003 1010 1020 ∗1003 1007.25 2.124 257.234 1011 1014.25 3.058 180.62 490

j8-per0-1 (1039) ← N.a. 1075 ∗1039 1048.65 6.515 313.404 1065 1074.35 4.591 311.913 640
j8-per0-2 (1052) ← N.a. 1073 ∗1052 1057.05 2.981 323.343 1065 1076.25 6.163 301.906 640
j8-per10-0 (1020) ← N.a. 1053 ∗1020 1026.9 5.046 346.408 1036 1043.3 4.52 355.615 640
j8-per10-1 (1004) ← N.a. 1029 ∗1004 1012.4 3.604 308.802 1022 1026.35 2.978 308.052 640
j8-per10-2 (1009) ← N.a. 1027 ∗1009 1013.65 4.307 399.35 1020 1028.4 5.04 350.731 640
j8-per20-0 1000 N.a. 1015 ∗1000 1001 1.213 237.162 1003 1010.45 3.086 345.139 640
j8-per20-1 1000 N.a. ∗1000 ∗1000 1000 0 2.526 ∗1000 1000 0 37.536 640
j8-per20-2 1000 ← N.a. 1014 ∗1000 1000.55 1.145 286.136 1001 1006.9 2.971 283.031 640

For an explanation of the table format see Section 6.3.

6.3.2. Results for the Brucker et al. instances (Table 4)
As a result of the relatively low diNculty of the Taillard instances, the Brucker et al. instances were

generated in order to be more diNcult to solve. The increased diNculty results in an increased perfor-
mance diIerence between Beam-ACO-OSS and Standard-ACO-OSS, respectively, Beam-ACO-OSS
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Table 5
Results for the OSS benchmark instances provided by GuReret and Prins in [36]

Best GA-Liaw GA-Prins Beam-ACO-OSS Standard-ACO-OSS [15] Time limit(s)
known

Instance Best Average
√
* St Best Average

√
* St

gp03-01 1168 N.a. ∗1168 ∗1168 1168 0 0 ∗1168 1168 0 0 90
gp03-02 1170 N.a. ∗1170 ∗1170 1170 0 0 ∗1170 1170 0 0 90
gp03-03 1168 N.a. ∗1168 ∗1168 1168 0 0 ∗1168 1168 0 0 90
gp03-04 1166 N.a. ∗1166 ∗1166 1166 0 0 ∗1166 1166 0 0 90
gp03-05 1170 N.a. ∗1170 ∗1170 1170 0 0 ∗1170 1170 0 0 90
gp03-06 1169 N.a. ∗1169 ∗1169 1169 0 0 ∗1169 1169 0 0 90
gp03-07 1165 N.a. ∗1165 ∗1165 1165 0 0 ∗1165 1165 0 0 90
gp03-08 1167 N.a. ∗1167 ∗1167 1167 0 0 ∗1167 1167 0 0 90
gp03-09 1162 N.a. ∗1162 ∗1162 1162 0 0 ∗1162 1162 0 0 90
gp03-10 1165 N.a. ∗1165 ∗1165 1165 0 0 ∗1165 1165 0 0 90

gp04-01 1281 N.a. ∗1281 ∗1281 1281 0 0.015 ∗1281 1281 0 0.043 160
gp04-02 1270 N.a. ∗1270 ∗1270 1270 0 0.031 ∗1270 1270 0 0.096 160
gp04-03 1288 N.a. ∗1288 ∗1288 1288 0 0.014 ∗1288 1288 0 0.004 160
gp04-04 1261 N.a. ∗1261 ∗1261 1261 0 0.025 ∗1261 1261 0 0.325 160
gp04-05 1289 N.a. ∗1289 ∗1289 1289 0 0.009 ∗1289 1289 0 0.009 160
gp04-06 1269 N.a. ∗1269 ∗1269 1269 0 0.01 ∗1269 1269 0 0.008 160
gp04-07 1267 N.a. ∗1267 ∗1267 1267 0 0.107 ∗1267 1267 0 0.612 160
gp04-08 1259 N.a. ∗1259 ∗1259 1259 0 0.017 ∗1259 1259 0 0.007 160
gp04-09 1280 N.a. ∗1280 ∗1280 1280 0 0.079 ∗1280 1283 1.777 15.369 160
gp04-10 1263 N.a. ∗1263 ∗1263 1263 0 0.018 ∗1263 1263 0 0.011 160

gp05-01 1245 N.a. ∗1245 ∗1245 1245 0 1.065 ∗1245 1245 0 0.303 250
gp05-02 1247 N.a. ∗1247 ∗1247 1247 0 1.125 ∗1247 1247 0 0.081 250
gp05-03 1265 N.a. ∗1265 ∗1265 1265 0 0.298 ∗1265 1265 0 0.212 250
gp05-04 1258 N.a. ∗1258 ∗1258 1258.6 1.095 10.32 ∗1258 1258.1 0.307 88.377 250
gp05-05 1280 N.a. ∗1280 ∗1280 1280 0 0.28 ∗1280 1280 0 0.335 250
gp05-06 1269 N.a. ∗1269 ∗1269 1269.05 0.223 9.279 ∗1269 1269 0 0.635 250
gp05-07 1269 N.a. ∗1269 ∗1269 1269 0 0.083 ∗1269 1269 0 0.104 250
gp05-08 1287 N.a. ∗1287 ∗1287 1287 0 0.12 ∗1287 1287 0 0.159 250
gp05-09 1262 N.a. ∗1262 ∗1262 1262 0 1.401 ∗1262 1262 0 0.401 250
gp05-10 1254 N.a. ∗1254 ∗1254 1254.6 0.502 6.068 ∗1254 1254.2 0.41 50.247 250

gp06-01 1264 N.a. ∗1264 ∗1264 1264.65 0.489 30.733 ∗1264 1264.75 0.444 53.03 360
gp06-02 1285 N.a. ∗1285 ∗1285 1285.65 0.489 48.643 ∗1285 1285 0 13.58 360
gp06-03 (1255) N.a. ∗1255 ∗1255 1255 0 29.678 ∗1255 1255.2 0.41 120.159 360
gp06-04 1275 N.a. ∗1275 ∗1275 1275 0 25.896 ∗1275 1275 0 2.989 360
gp06-05 1299 N.a. 1300 ∗1299 1299.15 0.366 39.848 ∗1299 1299 0 8.086 360
gp06-06 1284 N.a. ∗1284 ∗1284 1284 0 42.912 ∗1284 1284 0 112.65 360
gp06-07 (1290) N.a. ∗1290 ∗1290 1290 0 10.439 ∗1290 1290 0 5.687 360
gp06-08 1265 N.a. 1266 ∗1265 1265.2 0.41 71.846 ∗1265 1265 0 87.269 360
gp06-09 (1243) N.a. ∗1243 ∗1243 1243 0 9.797 ∗1243 1243.1 0.307 61.804 360
gp06-10 (1254) N.a. ∗1254 ∗1254 1254 0 4.257 ∗1254 1254 0 23.295 360

gp07-01 (1159) N.a. ∗1159 ∗1159 1159 0 86.9 ∗1159 1159 0 19.931 490
gp07-02 (1185) N.a. ∗1185 ∗1185 1185 0 80.233 ∗1185 1185 0 1.284 490
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Table 5 (continued)

Best GA-Liaw GA-Prins Beam-ACO-OSS Standard-ACO-OSS [15] Time limit(s)
known

Instance Best Average
√
* St Best Average

√
* St

gp07-03 1237 N.a. ∗1237 ∗1237 1237 0 40.869 ∗1237 1237 0 14.446 490
gp07-04 (1167) N.a. ∗1167 ∗1167 1167 0 59.104 ∗1167 1167 0 7.823 490
gp07-05 1157 N.a. ∗1157 ∗1157 1157 0 124.4 ∗1157 1157 0 60.921 490
gp07-06 (1193) N.a. ∗1193 ∗1193 1193.9 0.447 152.316 ∗1193 1193 0 41.692 490
gp07-07 1185 N.a. ∗1185 ∗1185 1185.05 0.223 91.087 ∗1185 1185 0 3.307 490
gp07-08 (1180) ← N.a. 1181 ∗1180 1181.35 1.136 206.618 ∗1180 1180.1 0.307 171.775 490
gp07-09 (1220) N.a. ∗1220 ∗1220 1220.05 0.223 127.896 ∗1220 1220 0 79.751 490
gp07-10 1270 N.a. ∗1270 ∗1270 1270.05 0.223 65.521 ∗1270 1270 0 0.824 490

gp08-01 1130 ← N.a. 1160 ∗1130 1132.4 0.82 334.999 1131 1132.2 1.105 253.686 640
gp08-02 (1135) ← N.a. 1136 ∗1135 1136.1 0.64 228.379 1136 1138.55 3.268 173.644 640
gp08-03 1110 ← N.a. 1111 1111 1113.65 1.531 336.249 ∗1110 1115.4 3.56 223.165 640
gp08-04 (1154) ← N.a. 1168 ∗1154 1156 2.152 275.667 ∗1154 1167.3 3.13 117.341 640
gp08-05 1218 N.a. ∗1218 1219 1219.75 0.786 347.652 ∗1218 1218 0 84.219 640
gp08-06 (1116) ← N.a. 1128 ∗1116 1123.15 6.368 359.165 1117 1129.9 4.678 261.855 640
gp08-07 (1126) N.a. 1128 ∗1126 1134.6 4.333 296.764 ∗1126 1135.9 5.739 247.259 640
gp08-08 (1148) N.a. ∗1148 ∗1148 1148.95 1.986 277.328 ∗1148 1148.5 2.236 193.339 640
gp08-09 1114 N.a. 1120 1117 1118.95 2.163 278.971 ∗1114 1114.85 0.587 216.003 640
gp08-10 (1161) N.a. ∗1161 ∗1161 1161.5 0.76 281.21 ∗1161 1161 0 115.317 640

gp09-01 (1135)← N.a. 1143 ∗1135 1142.75 3.905 412.859 1146 1147.9 0.447 92.369 810
gp09-02 (1112) ← N.a. 1114 ∗1112 1113.65 1.268 430.72 ∗1112 1115.75 2.971 339.173 810
gp09-03 (1117) ← N.a. 1118 1118 1120.35 3.183 427.901 ∗1117 1117.8 0.41 229.681 810
gp09-04 1130 ← N.a. 1131 ∗1130 1139.95 5.031 549.605 1138 1140.55 0.998 423.673 810
gp09-05 1180 N.a. ∗1180 ∗1180 1180.5 0.76 295.81 ∗1180 1180 0 33.129 810
gp09-06 (1093) ← N.a. 1117 ∗1093 1095.55 1.791 386.963 1096 1115.5 4.696 368.055 810
gp09-07 (1097) ← N.a. 1119 ∗1097 1101.35 4.221 431.358 1115 1116.95 1.538 466.172 810
gp09-08 (1106) ← N.a. 1110 ∗1106 1113.7 4.168 376.168 1108 1110.15 1.089 399.477 810
gp09-09 (1126) ← N.a. 1132 1127 1132.45 5.185 402.6 ∗1126 1127.55 2.928 492.055 810
gp09-10 (1120) ← N.a. 1130 ∗1120 1126.3 5.016 435.747 1122 1127.8 3.138 360.788 810

gp10-01 (1099) ← N.a. 1113 ∗1099 1108.95 6.893 567.483 1108 1114.25 4.81 488.887 1000
gp10-02 (1099) ← N.a. 1120 1101 1107.4 5.968 501.614 1102 1112 6.44 518.934 1000
gp10-03 (1081) ← N.a. 1101 1082 1097.95 9.167 658.609 1097 1104.8 3.188 522.292 1000
gp10-04 (1089) ← N.a. 1090 1093 1096.6 2.798 588.077 ∗1089 1094.3 3.246 499.312 1000
gp10-05 (1080) ← N.a. 1094 1083 1092.4 6.459 636.339 1091 1096.65 4.246 399.796 1000
gp10-06 (1072) ← N.a. 1074 1088 1104.55 6.336 595.407 ∗1072 1078.4 10.772 443.577 1000
gp10-07 (1081) ← N.a. 1083 1084 1091.45 5.623 389.504 ∗1081 1082.45 1.145 483.911 1000
gp10-08 (1098) N.a. ∗1098 1099 1104.8 3.721 615.811 1099 1104.3 3.435 575.089 1000
gp10-09 (1120)← N.a. 1121 1121 1128.7 3.743 554.427 1124 1128.15 3.116 617.443 1000
gp10-10 (1092) ← N.a. 1095 1097 1106.65 7.895 562.495 ∗1092 1094.4 1.465 412.624 1000

For an explanation of the table format see Section 6.3. Note that the improved best known solutions for instances
gp10-02, gp10-03, gp10-05, and gp10-09 were obtained by diIerent versions of Beam-ACO-OSS (see Table 2(b)).
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and the two GA algorithms. This becomes especially apparent on the bigger problem instances j7-*
and j8-*. Beam-ACO-OSS is clearly the best algorithm. It Ands for 9 of the 17 biggest instances the
best known solution values, and is able to improve the best known solution values for further 5 of
the remaining 8 biggest problem instances. In contrast, Standard-ACO-OSS and GA-Prins only And
the best known solution values for 2 of the 17 biggest problem instances. Furthermore, GA-Liaw
is consistently better than GA-Prins on the instances to which it was applied. However, it was not
applied to the biggest problem instances (j8-*), and only Ands for 1 of the 9 instances j7-* the best
known solution value.

6.3.3. Results for the Gu�eret and Prins instances (Table 5)
Also the GuReret and Prins instances were generated in order to be diNcult to solve.

Beam-ACO-OSS and Standard-ACO-OSS (which was applied for the Arst time to this set of bench-
mark instances) improve for 24 of the 80 instances the best known solution values: Beam-ACO-OSS
improves the best known solution value of 14 instances, Standard-ACO-OSS improves the best
known solution value of 8 instances, and both algorithms And the same improved solution value for
further 2 instances. The advantage of Beam-ACO-OSS over Standard-ACO-OSS is not as clear on
this benchmark set as on the other two benchmark sets. However, both algorithms clearly outperform
GA-Prins, which was the best algorithm so far for this benchmark set. It is interesting to note that
for one of the instances (i.e., gp10-06) Standard-ACO-OSS is clearly better than Beam-ACO-OSS.
This possibly indicates that the lower bound that is used in Beam-ACO-OSS leads the algorithm for
this problem instance to a “wrong” area in the search space. This is also indicated by the average
computation time on some of the instances. For example, Standard-ACO-OSS needs on average
0:824 s for solving problem instance gp07-10 in 20 out of 20 runs, whereas Beam-ACO-OSS needs
on average 65:521 seconds for solving this instance in 19 out of 20 runs.

To summarize, we can state that Beam-ACO-OSS is a new state-of-the-art algorithm for solving
the existing OSS benchmark instances. Altogether it was able to improve the best known solution
values for 22 of the available benchmark instances (1 Taillard instance, 5 Brucker instances, and
16 GuReret and Prins instances). Furthermore, we were able to substantially improve on the results
obtained by the best standard ACO algorithm for the OSS problem (Standard-ACO-OSS).

7. Conclusions and outlook

In this paper we have hybridized the solution construction mechanism of ACO algorithms with
BS. The resulting way of constructing solutions can be regarded as a probabilistic BS procedure.
This approach, which we called Beam-ACO, is general and can in principle be applied to any
CO problem. Furthermore, we proposed a Beam-ACO approach for the application to open shop
scheduling, which is an NP-hard scheduling problem. We experimentally showed that the results
obtained by the Beam-ACO approach improve on the results that are obtained by the currently best
standard ACO algorithm that is available for OSS. Furthermore, we showed that the Beam-ACO
approach is even a state-of-the-art method for solving the existing OSS benchmark instances. This
was done by comparing the Beam-ACO approach to the two best approaches that are currently
available in the literature.
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Encouraged by these results we plan to apply Beam-ACO approaches to other CO problems. To
our opinion, Beam-ACO approaches are especially promising for the application to problems where
tree search methods perform well and where it is diNcult to And a well-working neighborhood for
local search-based methods.
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