
A memetic algorithm for University Course Timetabling

Olivia Rossi-Doria and Ben Paechter

School of Computing, Napier University,
10 Colinton Road, Edinburgh, EH10 5DT, Scotland

o.rossi-doria@napier.ac.uk, b.paechter@napier.ac.uk

Abstract

We present here a metaheuristic approach to the university course timetabling prob-
lem using a memetic algorithm with a very effective local search. The algorithm was
tested on the International Timetabling Competition benchmark instances. Results
are encouraging and show that evolutionary computation with the help of local search
can compete with succesful algorithms on the problem.

1 Introduction

University course timetabling is the problem of producing a weekly timetable for a university.
Lectures have to take place in a given number of timeslots and rooms, so that a number of
constraints are satisfied.

Different versions of the problem arise at different universities. In general two lectures
having students in common cannot take place at the same time. This is a hard constraint
which means that it must not be violated under any circumstances. Other types of hard
constraints are usually included. A number of soft constraints are also usually considered.
These are constraints that should be preferably obeyed, but, if necessary, can be broken at
a certain cost. The aim of the problem is to minimize this cost while all hard constraints
are satisfied. The general course timetabling problem is NP-hard [6, 5].

Comprehensive reviews on the timetabling problem and a number of research works to
tackle it can be found in [3, 14].

The size and complexity of modern university timetabling problems has encouraged
research in metaheuristic techniques, such as evolutionary computation, tabu search and
simulated annealing. Metaheuristics are stochastic methods used when the size of the search
space becomes unmanageble for exact methods and no effective algorithm capable of finding
an optimal solution is available. They provide a framework to guide the search in order to
find good solutions in an acceptable amount of time. There is no guarantee of finding the
optimal solution, and due to the stochastic nature of the algorithms different solutions can
be found in different runs. Nonetheless metaheuristics have shown to be highly effective and
provide state-of-the-art solutions to many different problems.

In this paper we present a memetic algorithm for the university course timetabling prob-
lem. Memetic algorithms [10] are metaheuristics combining population-based global search
as evolutionary computation with local search made by each of the individuals. While evo-
lutionary computation [7, 9] takes inspiration from biological evolution of species, memetic
algorithms mimic cultural evolution. The term meme denotes the idea of a cultural unit
of knowledge transmitted after re-interpretation and improvement, that in the context of
combinatorial optimization corresponds to local serach. A population of candidate solutions
is created. Individuals can be chosen randomly or with the help of heuristic information.
After that, local search is applied to each individual to improve them before they interact
with each other. The population is evolved through three major stages to generate more

1



fit individuals: selection of better individuals, their reproduction through recombination
and mutation, and a replacement strategy to include into the population the offspring after
improvement by local search.

In Section 2 we describe the version of the problem we address here. Section 3 accounts
for the memetic algorithm used to solve it. A very effective local search [4, 15] is used to
further improve the solution timetables at each generation. Section 4 gives information on
the International Timetabling Competition benchmark instances used to test the algorithm.
Promising results are presented and discussed in Section 5, proving that evolutionary com-
putation in combination with a good local search can deal with the problem and compete
with other succesful algorithms. Finally conclusions are drawn in Section 6.

2 The University Course Timetabling Problem

The version of the problem tackled here was proposed by Ben Paechter for the International
Timetabling Competition [8] organized by the Metaheuristics Network. It is referred to in
the following as the University Course Timetabling Problem (UCTP-C), where the C stands
for competition.

Lectures must be scheduled in 45 timeslots (5 days of 9 hours each) and a number of
rooms, with varying facilities and student capacities, so that the following hard constraints
are satisfied:

• H1: lectures having students in common cannot take place at the same time;

• H2: lectures must take place in a room suitable for them in terms of facilities and
student capacity;

• H3: and no two lectures can take place at the same time in the same room.

We consider as well the following soft constraints:

• S1: students should not have to attend lectures in the last timeslot of the day;

• S2: they should not attend more than two lectures in a row;

• S3: and they should not have an only lecture in any given day.

Note that the given soft constraints are representative of three different types of constraints:
constraint S1 can be checked without knowledge of the rest of the timetable; S2 can be
checked while building a timetable; and S3 can only be checked when the timetable is
complete and all lectures have been assigned a timeslot.

A timetable in which all lectures have been assigned a timeslot and a room so that no
hard constraint is violated is said to be feasible. The aim of the problem is to find a feasible
solution with minimal soft constraint violations.

3 A memetic algorithm for the UCTP-C

We have implemented a memetic algorithm which makes use of the representation and local
search, due to Socha and Chiarandini [4, 15], that proved very good for the International
Timetabling Competition. We briefly recall them in Section 3.1 and 3.2. Constructive
heuristics used by the algorithm are reported in Section 3.3 and the evolutionary operators
are described in Section 3.4. The algorithm is outlined in Algorithm 1.



Algorithm 1 The memetic algorithm.

input: A problem instance I
for i = 1 to n/2 do
si ← Initial Heuristic Assignment(hi)
si ← Local Search()

si ← Local Search Further Improvements()

end for
for i = n/2 to n do
si ← Initial Random Assignment()

si ← Local Search()

si ← Local Search Further Improvements()

end for
sort population by fitness
while time limit not reached do
p1 ← Tournament Selection()

p2 ← Tournament Selection()

c← Uniform Crossover(p1, p2, H)

c← Adaptive Mutation(p1, p2, H)

c← Local Search()

if c 6= p1 and c 6= p2 then
sn ← c
sort population by fitness
sbest ← s1

end if
end while
output: An optimized timetable solution sbest for I

3.1 Representation

As suggested in [15], the timetable is represented in the form of an integer matrix T with t
rows and r columns, t and r being respectively the number of timeslots and the number of
rooms. The value of entry Ti,j is the label of the lecture that takes place in timeslot i and
room j. If no lecture is placed in the position of the timetable corresponding to timeslot i
and room j then Ti,j takes the value -1.

It should be noted that this representation does not allow to encode all possible assign-
ment of lectures to timeslots and rooms. In particular no two lectures can share the same
position in the timeslot. Such an assignment, however, is not feasible by definition, and the
chosen representation is able to encode any feasible assignment. Furthermore, no assign-
ment that would cause hard constraint violations is allowed by the algorithm. This means
that a lecture will only be placed in a suitable room, and that no lecture will ever be placed
in a timeslot where there is already another lecture sharing students with it. To make this
possible the maximum number of timeslots used might be temporarily relaxed to more than
45 in order to accomodate all lectures that wouldn’t fit anywhere without breaking hard
constraints. Of course a timetable that uses more than 45 timeslots cannot be regarded as
feasible as it does not fulfil the requirements in the problem definition. The local search is
usually able to reduce the number of timeslots used and find a feasible timetable.

3.2 Local search

We use a very effective local search consisting of a stochastic process in two phases: the first
phase to improve an infeasible timetable so that it becomes feasible by reducing the number
of timeslots used; and the second phase to increase the quality of a feasible timetable by
reducing the number of soft constraint violations.



Two basic moves are considered in both phases: moving a lecture to a different suitable
place, and swaping timeslots and rooms of two lectures so that they still are in suitable places.
A suitable place for a lecture here means a timeslot and room pair where the lecture will
not violate any hard constraints. Note that in the case of the first phase solving feasibility
this can mean a timeslot greater than the given limit of 45. Some further improvements are
obtained by means of a matching algorithm and of Kempe chain interchanges. The matching
algorithm is used to re-assign rooms to lectures within a timeslot every time that a lecture
is moved into it. Kempe chain interchanges consists in exchanging all connected lectures
in two given timeslots and re-assigning rooms via the matching algorithm. Lectures are
connected when they cannot be in the same timeslot because of student sharing or because
they both require the same single room.

3.3 Heuristics

Constructive heuristics have been used in the literature [2, 16] to solve graph colouring
problems or related timetabling problems. The most well known for graph colouring is
related to the number of edges incident to a vertex of the graph, that in the corresponding
timetabling problem is the number of correlations of a lecture, or the number of other lectures
sharing students with it. Here they are used to initialise the population in a constructive
process as well as for a crossover repair mechanism, when lectures remain unscheduled.

In particular we use two types of heuristics which were originally designed for a hy-
perheuristic approach to the problem [13]. The first type is used to choose which lecture
should be inserted next into the timetable and include the following heuristics: choose the
lecture with maximum number of correlations, the lecture with maximum weighted num-
ber of correlations, with maximum number of students, with minimum number of possible
rooms, with maximum number of required facilities, with room suitable for most lectures.
The second type of heuristics are used to choose into which timeslot and room the lecture
should be placed, and include: choose the timeslot with most parallel lectures, the first or
last available timeslot, the smallest possible room, the room suitable for least lectures.

3.4 Evolution process

We use the Steady-State evolution model, proposed by Withley [17], where only one child
solution is generated from two parents at each generation.

Half of the initial population of 10 individuals is generated with the help of costructive
heuristics described in Section 3.3, where the assignments of timeslots and rooms are always
chosen among feasible ones, i.e. assignments that do not cause hard constraint violations.
The other half is generated in a semi-random manner to ensure diversity. This means that
the assignment of each lecture is determined randomly among the feasible ones. Every
individual is improved by means of the local search before evolution starts.

Selection: Both parents are selected using tournament selection of size 2, that is two
individuals are chosen at random from the population and compared, and the best
one of the two is selected to be parent.

Recombination operator: The two selected parents are recombined using a simple crossover
where the child’s lectures inherit their position uniformly from both parents. If at any
time a position for a lecture is already taken then the lecture is inserted in a list of
not yet scheduled lectures. Lectures from this list are then placed into the timetable
with the help of constructive heuristics described in Section 3.3.

Mutation operator: Mutation is adaptive with respect to parents’ diversity, with a max-
imum mutation rate of 0.8 when parents are identical. It consists of random moves
in the local search neighbourhood, extended by 3-opt. It tries at random one of the
following:



• pick at random a starting lecture and try to put it in a feasible timeslot;

• try to swap two lectures taken at random within the feasible region;

• try to exchange the positions of three lectures picked at random within the feasible
region.

All three types of move are tried until a feasible move can be performed or all moves
of that type have been tried;

A directed mutation re-scheduling the lectures causing most problems according to
heuristic information was tested as well, also in combination with random mutation,
but it was discarded as it was not effective.

Local search: Only the basic local search described in Section 3.2 is applied to improve
every child, as the local search extensions using the matching algorithm and Kempe
chains proved not useful and quite expensive at this level. Applying the local search
extensions to the best known solution every so often doesn’t give any improvement
either.

Replacement strategy: At each generation the child replaces the worst member of the
population, provided that it is not identical to either parent in order to avoid early
convergence.

4 Problem instances

We have tested the algorithm on the 20 instances proposed for the International Timetabling
Competition. They can be found on the official website [8] together with the best results
found by participants. They were produced by a random instance generator with the fol-
lowing parameters: number of lectures between 350 and 440, number of students between
200 and 300, and number of rooms around 10. Other parameters specified to the generator
are the number of facilities, the approximate number of facilities per room, the percentage
of facilities use, the maximum number of lectures per students, and the maximum number
of students per lecture.

Perfect solutions, i.e. solutions with no constraint violations, hard or soft, exist for all
the 20 instances.

5 Experimental results

Results are encouraging, giving great improvement on a previous version using a differ-
ent local search [11, 4], and they are approaching best known results on the International
Timetabling Competition instances.

Instance 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
MHN 57 31 61 112 86 3 5 4 16 54 38 100 71 25 14 11 69 24 40 0

Winner 45 25 65 115 102 13 44 29 17 61 44 107 78 52 24 22 86 31 44 7
2nd 61 39 77 160 161 42 52 54 50 72 53 110 109 93 62 34 114 38 128 26
3rd 85 42 84 119 77 6 12 32 184 90 73 79 91 36 27 300 79 39 86 0
4th 63 46 96 166 203 92 118 66 51 81 65 119 160 197 114 38 212 40 185 17

MA best 88 67 94 169 194 62 84 57 61 97 82 116 130 146 80 53 134 53 142 28
MA average 104 91 126 189 212 90 127 94 78 113 90 138 185 187 120 74 182 75 224 60

Table 1: Our results compared with the first 4 best official results of the competition and the
Metaheuristics Network submission. Reported for our algorithm are the best and average
fitness values found on 10 runs per instance, within the time allowed for the competition
(1800 secs per run on a 500MHz PC).

We run the algorithm 10 times on each instance for 1800 seconds, which is the benchmark
time allowed by the competition on our 500MHz PC. Reported in Table 1 are the best and



average fitness values found for each instance, as well as the best values found by the best
four participants to the competition and by the Metaheuristics Network team that was not
allowed to officially enter the competition.

6 Conclusions

We presented an effective memetic algorithm for the UCTP-C, showing that evolutionary
computation can deal succesfully with the problem. The use of the effective local search is
an important element of its good performance. Best found solutions out of only 10 runs per
instance are among the best 5 entries in the International Timetabling Competition.

Acknowledgements. We would like to thank Kryzstof Socha and Marco Chiarandini for
sharing their code. Our work was supported by the Metaheuristics Network, a Research
Training Network funded by the Improving Human Potential Programme of the CEC, grant
HPRN-CT-1999-00106. The information provided is the sole responsibility of the authors
and does not reflect the Community’s opinion. The Community is not responsible for any
use that might be made of data appearing in this publication.

References

[1] E. K. Burke, M. Carter (eds.), The Practice and Theory of Automated Timetabling:
Selected Papers from the Second International Conference. Lecture Notes in Computer
Science 1408, Springer-Verlag, Berlin, 1997.

[2] M. W. Carter and G. Laporte and S. Y. Lee. Examination Timetabling: Algorithmic
Strategies and Applications. Journal of the Operational Research Society, 47:373–383,
1996.

[3] M. W. Carter and G. Laporte. Recent developments in practical course timetabling. In
[1]. 3–19, 1997.

[4] M. Chiarandini, M. Birattari, K. Socha, O. Rossi-Doria. An effective hybrid approach
for the University Course Timetabling Problem. Submitted to the Journal of Scheduling.

[5] T. B. Cooper, J. H. Kingston. The complexity of timetable construction problems.
The Practice and Theory of Automated Timetabling: Selected Papers from the First
International Conference. Lecture Notes in Computer Science 1153, Springer-Verlag,
Berlin, 283–295, 1996.

[6] S. Even, A. Itai, A. Shamir. On the complexity of timetabling and multicommodity flow
problems. SIAM Journal of Computation, 5:4, 691–703, 1976.

[7] J. Holland. Adaption in natural and artificial systems, The University of Michigan Press,
1975.

[8] http://www.idsia.ch/Files/ttcomp2002/ Metaheuristics Network International
Timetabling Competition.

[9] Z. Michalewicz. Genetic Algorithms + Data Structure = Evolution Programs. Springer,
1996.

[10] P. Moscato. On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts:
Towards Memetic Algorithms. Caltech Concurrent Computation Program, Report 790,
1989. Pasadena, CA.



[11] O. Rossi-Doria, C. Blum, J. Knowles, M. Samples, K. Socha, B. Paechter. A local
search for the timetabling problem. Proceedings of the 4th international conference
on the Practice And Theory of Automated Timetabling 2002, 124–127. Gent, Belgium,
August 21-23, 2002.

[12] O. Rossi-Doria, M. Samples, M. Birattari, M. Chiarandini, J. Knowles, M. Manfrin,
M. Mastrolilli, L. Paquete, B. Paechter, T. Stützle. A comparison of the performance
of different metaheuristics on the timetabling problem. In PATAT 2002: The 4th in-
ternational conference on the Practice And Theory of Automated Timetabling. Gent,
Belgium, August 21-23, 2002. Lecture notes in Computer Science 2740, 329–351.

[13] O. Rossi-Doria, B. Paechter. An hyperheuristic approach to the course timetabling
problem using an evolutionary algorithm. Technical report, Napier University, Edin-
burgh, UK, 2003.

[14] A. Schaerf. A survey of Automated Timetabling. Artificial Intelligence Review, 13:87–
127, 1999.

[15] K. Socha. The influence of run-time limits on choosing Ant System parameters. In
Proceedings of GECCO 2003. Lecture notes in Computer Science.

[16] H. Terashima-Maŕın and P. Ross and M. Valenzuela-Rendón. Evolution of Constraint
Satisfaction Strategies in Examination Timetabling. Proceedings of the Genetic and
Evolutionary Computation Conference GECCO, 635–642. Morgan Kauffmann, 1999.

[17] D. Whitley. GENITOR: A Different Genetic Algorithm. In Proceedings of the Rocky
Mountain Conference on Artificial Intelligence. Denver, USA, 1988.


