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Abstract. In this article we investigate the application of iterated local
search (ILS) to the single machine total weighted tardiness problem.
Our research is inspired by the recently proposed iterated dynasearch
approach, which was shown to be a very effective ILS algorithm for this
problem. In this paper we systematically configure an ILS algorithms
by optimizing the single procedures part of ILS and optimizing their
interaction. We come up with a highly effective ILS approach, which
outperforms our implementation of the iterated dynasearch algorithm
on the hardest benchmark instances.

1 Introduction

In the single machine total weighted tardiness problem (SMTWTP) n jobs have
to be sequentially processed on a single machine. Each job j has a processing time
pj , a weight wj , and a due date dj associated, and the jobs become available for
processing at time zero. The tardiness of a job j is defined as Tj = max{0, Cj −
dj}, where Cj is the completion time of job j in the current job sequence. The
goal is to find a job sequence which minimizes the sum of the weighted tardiness
given by

∑n
i=1 wi · Ti.

The SMTWTP is an NP-hard [9] scheduling problem and instances with
more than 50 jobs can often not be solved to optimality with state-of-the-art
branch & bound algorithms [1,4]. Therefore, several heuristic methods have been
proposed for its solution. These include simple construction heuristics like the
Earliest Due Date or the Apparent Urgency heuristics (see [17] for an overview)
and metaheuristics like simulated annealing [14,17], tabu search [4], genetic algo-
rithms [4], ant colony optimization (ACO) [5,15], and iterated local search (ILS)
[3].

ILS appears to be a very promising approach for solving the SMTWTP,
because the ILS algorithm by Congram, Potts, and de Velde, called iterated dy-
nasearch [3], has shown so far, together with the recent ACO algorithm due
to den Besten, Stützle, and Dorigo[5], the best performance results for the
SMTWTP. Despite the very good performance of iterated dynasearch, it is not
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Algorithm 1 Algorithmic outline of iterated local search.
1: s0 = GenerateInitialSolution
2: s∗ = LocalSearch(s0)
3: repeat
4: s′ = Perturbation(s∗, history)
5: s∗′ = LocalSearch(s′)
6: s∗ = AcceptanceCriterion(s∗, s∗′, history)
7: until termination criterion met

very clear, whether this ILS algorithm has been designed in a best possible way.
Therefore, this paper examines the systematic, experimentally driven configura-
tion of an ILS algorithm for the SMTWTP. In particular, we first optimize the
single ILS components and derive in this way a highly effective algorithm. This
step-by-step methodology can also be used as a guideline for the development
of ILS algorithms for other combinatorial optimization problems.

The paper is structured as follows. Section 2 introduces ILS and Section 3
studies the influence of the single procedures which are part of an ILS algorithm
on its performance and gives experimental results with the final ILS algorithm.
We end with some concluding remarks in Section 4.

2 Iterated Local Search

The underlying idea of ILS [2,13,12] is that of building a random walk in S∗, the
space of local optima defined by the output of a given local search algorithm.
Four basic “ingredients” are needed to derive an ILS algorithm: a procedure Gen-
erateInitialSolution, which returns some initial solution, a local search procedure
LocalSearch, a scheme of how to perturb a solution, implemented by a procedure
Perturbation, and an AcceptanceCriterion, which decides from which solution the
search is continued. An algorithmic outline for ILS is given in Algorithm 1. The
particular walk in S∗ followed by the ILS algorithm can also be depend on the
search history, which is indicated by history in Perturbation and AcceptanceCrite-
rion.

The effectiveness of the walk in S∗ depends on the definition the four com-
ponent procedures of ILS: The effectiveness of the local search algorithm is of
major importance, because it strongly influences the final solution quality of
ILS and its overall computation time. The perturbations should allow the ILS
to effectively escape local optima but at the same time avoid the disadvantages
of random restart (hence, not be too strong). The acceptance criterion, together
with the perturbation, strongly influence the type of walk in S∗ and can be used
to control the balance between intensification and diversification of the search.
The initial solution will be mainly be important in the initial part of the search.

The configuration problem in ILS is to find a best possible choice for the
four components such that best overall performance is achieved. Because of the
interactions among the components, this is a difficult problem and it has to be
solved in a heuristic way. Here, we do this by considering at each step only the
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influence of one single component, keeping the others at some fixed, “reasonable”
choices. These are that (i) as the initial solution we use the best construction
heuristic, (ii) the acceptance criterion forces the cost to decrease (this means the
perturbation is always applied to the best solution found so far), and (iii) the
perturbation uses a number of random moves in a given neighborhood. First,
we will optimize the choice of LocalSearch by investigating different local search
algorithms. Once found a good local search, we reconsider the choices for the
solution perturbation and the acceptance criterion in that order.

3 Iterated Local Search for the SMTWTP

3.1 Local Search

Local search for the SMTWTP starts from some initial sequence and repeatedly
tries to improve the current sequence by replacing it with neighboring solutions.
The simplest local search algorithm, iterative descent, repeatedly replaces the
current sequence π with a better sequence found in the neighborhood of π and
stops at the first local minimum encountered. For the SMTWTP we considered
the following two neighborhood structures:

(1) exchanges of jobs placed at the ith and the jth position, i 6= j (interchange)
(2) removal of the job at the ith position and insertion in the jth position (insert)

To allow for a fast evaluation of moves in these neighborhoods, the data struc-
tures proposed in [3] were implemented. The neighborhood structure is critical
for the performance of the local search. Often, with more complex neighborhoods
than the two presented above better solutions may be found. An example of a
more complex neighborhood is the one used in dynasearch [3]. Dynasearch uses
dynamic programming to find a best move which is composed of a set of indepen-
dent interchange moves; each such move exchanges the jobs at positions i and j,
j 6= i. Two interchange moves are independent if they do not overlap, that is if
for two moves involving positions i, j and k, l we have that min{i, j} ≥ max{k, l}
or vice versa. This neighborhood is of exponential size and dynasearch explores
this neighborhood in polynomial time, to be more exact in O(n3). In [3] very
good performance with dynasearch has been reported.

To achieve further improvements of the solution quality, we considered the
application of a variable neighborhood descent (VND) [16]. In our VND we con-
catenate iterative descent algorithms using two different neighborhoods; such
an approach was also proposed in [18] for the permutation flow shop prob-
lem. VND exploits the observation that a local optimum with respect to one
neighborhood structure need not be a local optimum for the other one. In fact,
the variable neighborhood search (VNS) metaheuristic [16] systematically ap-
plies the idea of changing neighborhoods in the search. There are two possi-
ble ways of concatenating the two neighborhoods; these will be denoted in the
following as interchange+insert and insert+interchange, depending on which
neighborhood is searched first. Additionally, we also considered replacing the
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Table 1. Comparison of the local search effectiveness for the SMTWTP. Results on the
100 job instances without local search and using the interchange, the insert, and the
VND variants. We give the average percentage deviation from the best known solutions
(∆avg), the number of best-known solutions found (nopt), and the average CPU time
in seconds (tavg) averaged over the 125 benchmark instances.

start no local search insert interchange dyna interchange

∆avg nopt tavg ∆avg nopt tavg ∆avg nopt tavg ∆avg nopt tavg

EDD 135 24 0.0004 1.19 38 0.29 2.09 26 0.23 1.25 26 0.41
MDD 62 24 0.0007 1.31 36 0.32 1.03 33 0.16 1.02 33 0.27

AU 62 20 0.0018 0.56 39 0.11 0.81 33 0.05 0.90 30 0.12

start dynasearch+insert insert + interchange interchange+insert insert+dynasearch

∆avg nopt tavg ∆avg nopt tavg ∆avg nopt tavg ∆avg nopt tavg

EDD 0.30 45 0.46 0.46 49 0.30 0.52 42 0.28 0.46 50 0.34
MDD 0.39 46 0.33 0.42 42 0.33 0.37 44 0.20 0.42 42 0.40

AU 0.67 46 0.16 0.34 48 0.12 0.63 50 0.08 0.34 48 0.15

interchange local search algorithm with dynasearch, yielding two more variants,
namely dyna+insert and insert+dyna.

We evaluated the proposed local search algorithms using a benchmark set of
randomly generated instances, available via ORLIB at http://www.ms.ic.ac.-

uk/info.html. There are three sets of instances with 40, 50, and 100 jobs. While
for the 40 and 50 job instances the optimal solutions are known, the 100 job
instances are still unsolved and only the best known solutions are available.
The instances are generated by drawing the processing time pj for each job j
randomly according to a uniform distribution of integers between 1 and 100 and
assigning it a weight wj randomly drawn from a uniform distribution over the
integers between 1 and 10. The due dates are randomly drawn integers from the
interval [(1 − TF − RDD/2) · ∑

pi, (1 − TF + RDD/2) · ∑
pi], where TF, the

tardiness factor, and RDD, the relative due date, are two parameters. There are
five instances for each pair of TF and RDD from the set {0.2, 0.4, 0.6, 0.8, 1.0}.
This makes three sets of 125 instances each. The tardiness factor and the relative
due dates determine critically the difficulty of solving the instances. For example,
we found that most of the instances with TF = 0.2 are solved after one single
application of the best local search procedures, while for larger TF, the instances
were much harder to solve. All the experiments were run on a 700MHz Pentium
III CPU with 512 MB RAM. Programs were written in C++ and run under
Suse Linux 6.1.

The computational results are given in Table 1 for three different construc-
tion heuristics and all the described local search variants. Some of the benchmark
instances are very easily solved, as indicated by the large number of best-known
solutions found by the local search algorithms alone. In general, the best perfor-
mance is obtained by the VND local search algorithms, which yield significantly
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Table 2. Comparison of ILS algorithms using different choices for local search. Results
on the 100 job instances with one trial per instance of 10 secs. We give the average
percentage deviation from the best known solutions (∆avg), the number of best-known
solutions found (nopt), and the average CPU time in seconds to find the best solution
in a trial (tavg) averaged over the 125 benchmark instances.

start ILS-inter+insert ILS-dyna+insert ILS-insert+inter ILS-insert+dyna ILS-dynasearch

∆avg nopt tavg ∆avg nopt tavg ∆avg nopt tavg ∆avg nopt tavg ∆avg nopt tavg

AU 0.0006 116 1.95 0.0019 109 2.62 0.0057 107 2.79 0.0046 107 2.97 0.0848 79 5.02

better solution quality at only a slight increase in computation time compared
to the single neighborhood local search.1 The dynasearch local search seems not
to give significantly better solution quality than the interchange algorithm.2

Based on the results reported in Table 1, we run one trial on each instance
for 10 seconds with the basic ILS algorithm using the VND variants for the lo-
cal search and then measured the final solution quality and the number of best
known solutions found. Before discussing the results, let us identify the perturba-
tion applied in the ILS algorithm: We used either six random interchange moves
or six random insert moves, depending on which neighborhood is used in the
next local search. The idea is that the perturbation should be complementary to
the particular local search and it should be difficult for the local search to undo
the perturbation. For example, when applying ILS using the interchange+insert
local search, we use random insert moves for the perturbation, because they are
complementary to the following interchange local search.

The results of these latter experiments are reported in Table 2. In general,
VNDs interchange+insert and dyna+insert appear to perform best when used
inside an ILS algorithm. The insert+interchange VND performs only slightly
worse; significantly worse results are obtained with the ILS-dynasearch. The
results with ILS-dynasearch obtained with our re-implementation of dynasearch
also appear to be worse than those presented in [3], especially when taking into
account computation time (the experiments in [3] were run on a much slower
computer). We verified that our dynasearch implementation works properly from
a solution quality point of view, but it appears to be slower than the interchange
local search, while in [3] interchange was slower than dynasearch. Therefore,
we conjecture, that in particular the dynamic programming algorithm used in
dynasearch to examine the neighborhood could still be speed up and our results
with dynasearch should be taken as preliminary. Additionally, the use of C++
and some of its features like inheritance and templates may make our code
significantly slower.

1 The single results are slightly different to those published in [5], because of minor
changes in the local search implementation.

2 This fact has also noted in [3], where it was argued that the main advantage with
dynasearch comes from a repetitive application of dynasearch in an ILS.
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Fig. 1. We compare different choices for the local search with RTDs. The x-axis gives
the logarithm of the CPU time, the y-axis the cumulative empirical solution probability
(the more to the left a curve is located, the better performs the algorithm). RTDs are
given for the five local searches tested in Table 2. The number in the caption gives the
instances number; for example instance 42 is the 42nd instance of the 125 available one
from ORLIB.

In a second experiment we analyzed the ILS run-time behavior by using
run-time distributions (RTDs). RTDs give the cumulative empirically observed
probability of finding an optimal solution (or a solution within a specific solu-
tion quality bound) as a function of the CPU time [7,20]. Here, for each instance
25 runs have been performed. In total we examined the run-time behavior of
ILS algorithms with different choices for LocalSearch on 10 instances which were
known to be relatively hard; in particular they are not solved by applying one
single local search. Figure 1 presents only results for four instances, the behavior
on the others was similar. The RTDs show, that no single local search algo-
rithm gives the best behavior on all instances. The best performance is obtained
when applying the interchange+insert and dyna+insert VND (an exception is,
for example, instance 42); the ILS with dynasearch is significantly worse for
most instances. Because our interchange implementation is faster than our dy-
nasearch implementation, we use the interchange+insert VND for the following
experiments.
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Fig. 2. We compare different choices for the perturbation with RTDs. The x-axis gives
the logarithm of the CPU time, the y-axis the cumulative empirical solution proba-
bility. RTDs are given for the four different perturbation strengths for pure random
perturbations. Results are given for instances 19 (top left), 38 (top right), 42 (bottom
left) and 86 (bottom right).

3.2 Perturbation

Once fixed the choice for the local search, we closer examined the role of the
solution perturbation. We addressed two important issues:

Perturbation strength: We will refer to the strength of a perturbation as the
number of solution components which are modified. In the SMTWTP this
is the number of jobs directly affected by a perturbation. Different choices
for the perturbation strength, from three to twelve in steps of three, were
examined.

Nature of perturbations: As said before, the perturbations should be com-
plementary to the local search. Here, in addition we examined a variant, in
which the random perturbations were required to involve only late jobs.

Again, we examined the different choices for the perturbation strength using
RTDs, which are given in Figure 2 (results with perturbation focusing on late
jobs are not given to keep the figures as clear as possible). As a first result we
can observe that no single perturbation strength is best among all instances.
Additionally, we found that a focus on late jobs in the perturbation does not
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Fig. 3. We compare different acceptance criteria with RTDs. The x-axis gives the
logarithm of the CPU time, the y-axis the cumulative empirical solution probability.
RTDs are given for the three different acceptance criteria. The number in the caption
gives the instances number.

significantly improve performance. Therefore, we settled for the following choice
of the perturbation: (i) we do not focus on late jobs, because a simpler choice
gave similar performance and (ii) we varied the perturbation strength in a range
from three to twelve random moves. This latter variation was done in a scheme
analogously to that introduced in the basic VNS HanMla99:mic.

3.3 Acceptance Criterion

A natural choice for the acceptance criterion is to force the cost to decrease
by accepting an s∗′ if its cost is less than that of s∗ (we refer to this accep-
tance criterion as Better in the following). Such a choice leads to a very strong
intensification of the search and may lead to bad behavior for long run-times,
when diversification of the search becomes more important. Diversification of the
search is extremely favored if every s∗′ is accepted as the new solution, resulting
in a random walk in S∗. We call this acceptance criterion RW. In [3], a Backtrack
acceptance criterion is proposed, which is a combination of the Better and the
RW: For β iterations RW is used. If no improved solution is found, the ILS continues
again from the best solution seen so far.

The results of the RTD-based analysis of the acceptance criteria with RTDs
is plotted in Figure 3. We found that with respect to the acceptance criteria
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Table 3. We give some basic statistics on the distribution of the computation times
to solve instances of the three problem sets. We indicate the number of jobs (n),
the average time (averaged over the 125 instances) to solve the benchmark set (tavg)
and its standard deviation (σt), the average time to solve the easiest and the hardest
instance (tmin and tmax, respectively), and the quantils of the average time to solve
a given percentage of the instances. Qx indicates the average time to solve x% of the
benchmark instances.

n tavg σt tmin tmax Q25 Q50 Q75 Q90

100 5.75 14.50 0.0076 105.50 0.052 0.98 5.14 13.12
50 0.20 0.86 0.0017 8.71 0.0064 0.018 0.118 0.28
40 0.040 0.13 0.0011 1.23 0.0031 0.0072 0.033 0.062

the results were somewhat clearer compared to the findings on the other two
components: For almost all instances ILS with the Better acceptance criterion
showed best behavior. Hence, this acceptance criterion was also chosen for our
final ILS algorithm.

3.4 Experimental Results

The final ILS algorithm has the following shape: (i) it uses the AU construction
heuristic to generate the initial solution, (ii) it uses the interchange+insert VND
local search, (iii) it varies the perturbation strength between three to twelve
random insert moves, and (iv) it accepts only better solutions in the random walk
in S∗. We conducted some experiments with this ILS algorithm on all 40, 50, and
100 job SMTWTP instances available from ORLIB. On each instance 25 trials
were performed with a large computation time limit, which was enough that
each instance could be solved to the best-known solutions, which we conjecture
to be optimal, in each single trial. Of the 125 instances with 100 jobs (those with
40 or 50 jobs are very easily solved, see Table 3), only 15 took an average time
to optimal larger than 10 seconds; only 7 of these longer than 20 seconds. The
large majority of the benchmark instances was either solved with a single local
search or within very few seconds.

Our ILS algorithm also compares very favourably to our earlier ACO algo-
rithm presented in [5]. This shows that ILS may be an easily adaptable alterna-
tive to other, often more complex metaheuristics, showing an excellent perfor-
mance after some straightforward optimizations. A more detailed investigation
of different metaheuristics applied to the SMTWTP and a detailed search space
analysis of the SMTWTP are the next steps we will take.

4 Conclusion

The results of this research can be summarized as follows:

1. The independent optimization of the single components of an ILS algo-
rithm for the SMTWTP has led to a high performing ILS algorithm for
the SMTWTP.
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2. VND [16] leads to a very powerful local search for the SMTWTP.
3. For the SMTWTP the optimization of the ILS algorithm leads to improved

performance. Yet, the improvement due to these optimizations is not as
spectacular as observed for other problems [6,19,21], possibly due to the
powerful local search.

4. The SMTWTP instances from ORLIB do not pose a challenge for state-of-
the-art algorithms.

Clearly, these conclusions do raise further questions. The optimization of
ILS for the SMTWTP was certainly rather straightforward and heuristic. We
conjecture that for harder problems, this process will be much more important:
it will need more iterations through the choices for the single components and
statistical methods of experimental design will become more important. The
excellent performance of VND for the SMTWTP naturally lends to the question
whether VND can improve the efficiency of local search also for other scheduling
problems. Preliminary results suggest, that the answer strongly depends on the
particular problem. For example, in [18] encouraging results have been reported
with a VND for the flow shop problem, but some experiments with an ILS
algorithm [19] suggest that this improvement does not carry over to a significant
improvement of ILS.

Future work will include tests of the ILS algorithms on larger instances, and
an extension of our approach to other single machine scheduling problems. The
results of this paper and the very good performance of a variety of ILS algorithms
on several classes of scheduling problems [3,8,11,10,19] suggest that ILS is a very
appropriate metaheuristic to obtained very high quality solutions in scheduling
applications.
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