
ARTICLE IN PRESS
Available online at www.sciencedirect.com

Computers & Operations Research () –
www.elsevier.com/locate/dsw

New metaheuristic approaches for the edge-weighted
k-cardinality tree problem

Christian Bluma ;∗, Maria J. Blesab

aIRIDIA, Universit�e Libre de Bruxelles, Av. Franklin Roosevelt 50, CP 194/6, B-1050 Brussels, Belgium
bDept. LSI, Universitat Polit)ecnica de Catalunya, Jordi Girona 1-3, C6209 Campus Nord, E-08034 Barcelona, Spain

Abstract

In this paper we propose three metaheuristic approaches, namely a Tabu Search, an Evolutionary Compu-
tation and an Ant Colony Optimization approach, for the edge-weighted k-cardinality tree (KCT) problem.
This problem is an NP-hard combinatorial optimization problem that generalizes the well-known minimum
weight spanning tree problem. Given an edge-weighted graph G = (V; E), it consists of /nding a tree in
G with exactly k6 |V | − 1 edges, such that the sum of the weights is minimal. First, we show that our
new metaheuristic approaches are competitive by applying them to a set of existing benchmark instances and
comparing the results to two di3erent Tabu Search methods from the literature. The results show that these
benchmark instances are not challenging enough for our metaheuristics. Therefore, we propose a diverse set of
benchmark instances that are characterized by di3erent features such as density and variance in vertex degree.
We show that the performance of our metaheuristics depends on the characteristics of the tackled instance, as
well as on the cardinality. For example, for low cardinalities the Ant Colony Optimization approach is best,
whereas for high cardinalities the Tabu Search approach has advantages.
? 2003 Elsevier Ltd. All rights reserved.

Keywords: k-Cardinality tree problem; Metaheuristics; Combinatorial optimization; Ant Colony Optimization;
Evolutionary computation; Tabu search; Spanning trees

1. Introduction

The edge-weighted k-cardinality tree (KCT) problem 1 is a combinatorial optimization problem
which generalizes the well-known minimum weight spanning tree problem. It consists of /nding in
an edge-weighted graph G=(V; E) a subtree with exactly k edges, such that the sum of the weights

∗ Corresponding author. Fax: +32-2-650-2715.
E-mail addresses: cblum@ulb.ac.be (C. Blum), mjblesa@lsi.upc.es (M.J. Blesa).
1 Also referred to as the k-minimum spanning tree (k-MST) problem, or just the k-tree problem.

0305-0548/$ - see front matter ? 2003 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cor.2003.11.007

mailto:cblum@ulb.ac.be
mailto:mjblesa@lsi.upc.es

2 C. Blum, M.J. Blesa / Computers & Operations Research () –

ARTICLE IN PRESS

is minimal. The problem was /rst described in [1] and it has gained considerable interest in recent
years due to various applications, e.g. in oil-/eld leasing [2], facility layout [3,4], open pit mining
[5], matrix decomposition [6,7], quorum-cast routing [8] and telecommunications [9].

More formally, the KCT problem can be de/ned as follows. Let G = (V; E) be a graph with a
weight function w :E → N+ on the edges. We denote by Tk the set of all k-cardinality trees in
G. Then, the edge-weighted problem (G;w; k) consists of /nding a k-cardinality tree Tk ∈Tk that
minimizes

f(Tk) =
∑

e∈E(Tk)
w(e); (1)

where E(Tk) denotes the edges of Tk . Several authors have proved independently that the edge-
weighted KCT problem is NP-hard [10,11]. In [11] it has been shown that it is still NP-hard if
∀e∈E it holds that w(e)∈{1; 2; 3}, or if G=Kn (the fully connected graph on n vertices). However,
the problem is polynomially solvable if there are only two distinct weights. Several authors have
considered special types of graphs. One of the results is that the problem is polynomially solvable if
G is a tree [12]. The problem is also NP-hard for planar graphs and for points in the plane [11,13].
Polynomial algorithms exist for the cases when all points lie on the boundary of a convex region
and for graphs with bounded tree-width [11].

1.1. Existing approaches

In the area of exact methods, a Branch and Cut algorithm based on detailed studies of the
associated polyhedron has been developed and implemented in [14]. A Branch and Bound method is
also described in [8]. In [15], the number of connected components with k vertices is investigated.
Under the assumption that the kth power of the maximum vertex degree of the graph is bounded
from above by a polynomial, all the connected components with k vertices can be enumerated
in polynomial time. Then, by enumerating the search space, the minimum-cost spanning tree of
cardinality k can be found in polynomial time. This approach, however, has never been implemented.

A good range of heuristics has been proposed in [16]. The heuristics mentioned there are based on
greedy and dual greedy strategies and also make use of dynamic programming. The implementations
of most of the heuristics in [16] are documented in [17]. Other constructive heuristics have been
presented in [8].

Lately, authors have begun to apply metaheuristics [18] to the edge-weighted KCT problem. Meta-
heuristics include, but are not restricted to, Simulated Annealing (SA), Evolutionary Computation
(EC), Tabu Search (TS), Ant Colony Optimization (ACO), and Iterated Local Search (ILS), in
order of invention. Among the metaheuristic applications to tackle the edge-weighted KCT problem
there is an EC approach that uses local search methods to improve solutions [19], two TS methods
[20–22], a Variable Neighborhood Search (VNS) approach [23] and an ACO approach [24].

1.2. Our contribution

First, we de/ne a simple neighborhood structure that can be very eLciently computed. This
neighborhood structure de/nes for every solution a neighborhood that is a subset of the neighbor-
hood de/ned by the neighborhood structure proposed in [21] and used in [20]. Then, we propose

ARTICLE IN PRESS
C. Blum, M.J. Blesa / Computers & Operations Research () – 3

three di3erent metaheuristic approaches that make use of this neighborhood structure in di3erent
ways. The Tabu Search approach that we propose uses the neighborhood structure for performing
moves, whereas the Evolutionary Computation and the Ant Colony Optimization approach incorporate
black-box local search procedures that are also based on this neighborhood structure. Furthermore,
our Tabu Search approach is characterized by a scheme for dynamically changing the length of the
tabu lists. Our EC approach makes use of two heuristically guided crossover operators that were pro-
posed in [25] to solve the node-weighted version of the KCT problem. Finally, our ACO approach
is an improved version of the ACO approach that was proposed in [24].

Research on metaheuristics for the edge-weighted KCT problem started in 1995, when the /rst
metaheuristic approach was proposed. Until now, there is no set of commonly accepted and challeng-
ing benchmark instances. Furthermore, the approaches that were proposed so far were only tested
on d-regular graphs (i.e., in a d-regular graph each vertex is connected to d other vertices), even
though it was discovered before that the KCT problem appears to be especially hard to solve for grid
graphs. However, in order to be able to compare our algorithms with already existing approaches,
we /rst applied them to a set of 4-regular benchmark instances provided by Blesa and Xhafa in
[20,26], who generated these instances using a software tool by JNornsten and LHkketangen [21].
Then, we developed a diverse set of problem instances with the following distinguishing features:
(i) size of the graph (number of nodes, respectively edges), (ii) sparsity, respectively density, of
the graph, and (iii) the variance of the vertex degrees (i.e., a high variance of the vertex degrees
may be an indicator for the clusteredness of the graph). We conducted a considerable amount of
experiments on a homogeneous cluster of computers in order to compare the results obtained by our
three metaheuristic approaches.

The remainder of the paper is organized as follows. In Section 2 we describe the neighborhood
structure which is used by all metaheuristic approaches in di3erent ways. Sections 3–5 contain the
detailed descriptions of our metaheuristic approaches to tackle the KCT problem. In Section 6 we
propose a new set of diverse benchmark instances and we perform an experimental evaluation of
our methods. Finally, Section 7 o3ers conclusions and an outlook to the future.

2. Common neighborhood structure

Let S denote the search space. Then, a neighborhood structure N :S �→ 2S is a function that
provides a set of neighbors for every solution s∈S. The neighborhood structure we chose for the
KCT problem is very simple and intuitive. The neighborhood Nleaf (Tk) of a k-cardinality tree Tk

consists of all k-cardinality trees which can be generated by removing a leaf edge e, which results in
a (k − 1)-cardinality tree Tk−1, and adding an edge from the set ENH(Tk−1) \ {e}, where ENH(Tk−1)
is de/ned as follows:

ENH(Tk−1)← {e = {v; v′}∈E(G) | v∈V (Tk−1) XOR v′ ∈V (Tk−1)}; (2)

where E(G) denotes the edges of graph G. Intuitively, set ENH(Tk−1) consists of all edges that do not
belong to Tk−1 and that have exactly one end-point in Tk−1. We are going to use this neighborhood
structure in the TS approach for performing moves and in the population-based methods in black-box

4 C. Blum, M.J. Blesa / Computers & Operations Research () –

ARTICLE IN PRESS

local search procedures for improving solutions. This simple neighborhood can be very eLciently
generated since both, the set of leaves of a k-cardinality tree as well as set ENH(Tk−1), can be updated
incrementally during the search process without the necessity to recompute them from scratch. Note
that the neighborhood structure that was proposed in [21] and also used in [20] for Tabu Search
approaches additionally considers so-called cyclic moves. A cyclic move is generated by adding
to the current k-cardinality tree an edge that produces a cycle and by removing a di3erent edge
from this cycle such that the result is again a tree. However, the computational expenses of this
neighborhood are much higher.

3. Tabu Search approach

Tabu Search (TS) is among the most cited and used metaheuristics for the application to com-
binatorial optimization problems [27,28]. TS is based on local search. Basic local search is usually
called iterative improvement, since each move 2 within a given neighborhood structure N(·) is only
performed if the solution it produces is better than the current solution. The iterative improvement
procedure stops as soon as it /nds a local minimum. The improvement performed can either be a
=rst improvement, or a best improvement. The former scans the neighborhood N(s) of a solution
s and chooses the /rst solution with a lower objective function value than s, the latter exhaustively
explores the neighborhood and returns one of the solutions with the lowest objective function value.

TS explicitly uses the history of the search, both to escape from local minima and to implement
diversi/cation and intensi/cation strategies. The basic algorithm applies a best improvement local
search as basic ingredient and uses a short-term memory to escape from local minima and to avoid
cycling. The short-term memory is implemented as a set of tabu lists that store solution attributes.
Attributes refer usually to components of solutions, moves, or di3erences between two solutions.
The contents of the tabu lists de/nes the tabu conditions which are used to /lter the neighborhood
of a solution and generate the allowed set, which is a subset of the set of neighbors. The use of tabu
lists prevents the algorithm from returning to recently visited solutions. Therefore, it may enforce to
accept even non-improving moves. The length of the tabu lists (i.e., the tabu list tenure) determines
the behavior of the algorithm. With small tabu tenures the search will concentrate on limited areas
of the search space. On the opposite, a larger tabu tenure forces the search process to explore larger
regions, because it forbids revisiting a higher number of solutions. The tabu tenure can be varied
during the search process.

Our TS approach to tackle the edge-weighted KCT problem uses two tabu lists, henceforth denoted
by InList and OutList. The attributes they store are the edges that were recently added, respectively
removed, in the search process. Every move involves removing one edge e∈T cur

k from the current
k-cardinality tree T cur

k , and adding a di3erent edge to T cur
k − e. InList is the list to keep memory of

the removed edges, respectively OutList is the list to store added edges.
Another characterizing feature of our approach is the use of a dynamic tabu list tenure tlten.

Depending on the problem instance to be tackled, a minimum tabu list tenure ttmin,

2 A move is the transition from a solution s to a solution s′ ∈N(s) and usually de/ned by the modi/cation which has
to be done to s in order to generate s′.

ARTICLE IN PRESS
C. Blum, M.J. Blesa / Computers & Operations Research () – 5

a maximum tabu list tenure ttmax and an increment value ttinc are computed. At the beginning of
every restart phase (i.e., the current solution is deleted and a new initial solution is generated), tlten
is set to ttmin. If the restart-best solution T rb

k was not improved for a maximum number of nicmax
iterations, the tabu list tenure tlten is increased by ttinc in order to diversify the search process.
Whenever the restart-best solution T rb

k is improved, the tabu list tenure tlten is set back to ttmin in
order to intensify the search process around T rb

k . In case the increase of the tabu list tenure would
result in a tabu list tenure greater than ttmax, a restart is performed. This can be regarded as an
escaping mechanism for situations when the search process seems to be stuck.

The framework of our TS approach to tackle the edge-weighted KCT problem is shown in
Algorithm 1. We will refer to this algorithm as TS KCT. In the following, the components of
this algorithm are explained in more detail.

Algorithm 1 TS for the KCT problem (TS KCT)
input: a problem instance (G;w; k)
InitializeParameters(ttmin; ttmax; ttinc; tlten; nic; nicmax)
InitializeTabuLists(InList; OutList; tlten)
T cur
k ← GenerateInitialSolution()

T gb
k ← T cur

k , T rb
k ← T cur

k
while termination conditions not met do

T new
k ← FirstImprovingNeighbor(Nleaf(T

cur
k); InList; OutList)

if T new
k �= NULL then

UpdateTabuLists(T cur
k ; T new

k ; InList; OutList)
T cur
k ← T new

k

Update(T cur
k ; T rb

k ; T gb
k ; nic)

if nic¿nicmax then
if tlten + ttinc¿ttmax then

PerformRestart()
else

tlten ← tlten + ttinc
end if

end if
else

PerformRestart()
end if

end while
output: T gb

k

InitializeParameters(ttmin; ttmax; ttinc; tlten; nic; nicmax): After preliminary tests, we decided to set the
algorithm parameters depending on the problem instance (G = (V; E); w; k) under consideration in
the following way:

ttmin ← min
{⌊ |V |

5

⌋
; |V | − {k; k}

}

6 C. Blum, M.J. Blesa / Computers & Operations Research () –

ARTICLE IN PRESS

ttmax ←
⌊ |V |

3

⌋

ttinc ←
⌊
ttmax − ttmin

4

⌋
+ 1

nicmax ← max{ttinc; 200}:

The setting of ttmin considers the fact that for small and big cardinalities the tabu list tenure can
be rather small, whereas in the middle of the cardinality range a greater tabu list tenure might be
required since the complexity of the problem is higher. The setting of ttmax and ttinc is such that
the tabu list tenure can be successively increased for four times before a restart is performed. The
minimum value of nicmax, the maximum number of iterations without improvement, is set to 200,
and nic the counter for the number of iterations without improvement is initialized to 0.
InitializeTabuLists(InList; OutList; tlten): In this procedure, the two tabu lists are initialized to empty

lists, and they are given a maximum size of tlten.
GenerateInitialSolution(): To construct a k-cardinality tree Tk , /rst, an edge e = {v; v′}∈E is

chosen uniformly at random. With this edge, a 1-cardinality tree T1 with edge e and two nodes v
and v′ is created. Then, a k-cardinality tree Tk is constructed in a greedy manner by adding at each
of k−1 construction steps an edge e← argmin{w(e′) | e′ ∈ENH(Tt)} to the current t-cardinality tree
Tt under construction, where t ∈{1; : : : ; k − 1}.
FirstImprovingNeighbor(Nleaf (T cur

k); InList; OutList): In this function, a neighbor of the current
k-cardinality tree T cur

k is chosen. Only neighbors from the allowed set are eligible to be chosen.
The allowed set of neighbors is de/ned as follows. A k-cardinality tree Tk ∈Nleaf (T cur

k), where
Tk = T cur

k − eout + ein, is eligible, if and only if

(1) ein �∈ InList and eout �∈ OutList (otherwise Tk is called tabu), or
(2) f(Tk)¡f(T gb

k), where T gb
k is the best solution found since the start of the algorithm;

The second condition is called an aspiration criterion. Aspiration criteria are necessary because
storing only attributes in the tabu lists introduces a loss of information, since forbidding a move
means assigning the tabu-status to probably more than one solution. Thus, it is possible that unvisited
solutions of good quality are excluded from the allowed set.

Since our TS approach is a =rst improvement approach, the neighborhood exploration (i.e., the
exploration of the allowed set) stops when the /rst eligible neighbor that has a lower objective func-
tion value than the current solution is encountered. Otherwise the whole neighborhood is scanned
and the best neighbor solution, which has in this case a higher objective function value than
the current solution, is chosen. If no eligible neighbor can be found, then this function returns NULL.
The order in which neighbors are examined is the following one: The leaves of the current tree T cur

k
are examined in order of decreasing weight. In contrast, the candidates to join the current tree T cur

k are
examined in order of increasing weight. This way of exploring the neighborhood has the advantage
that neighbors with a lower objective function value are likely to be found earlier in the exploration

ARTICLE IN PRESS
C. Blum, M.J. Blesa / Computers & Operations Research () – 7

process. For example, if it is possible to remove the highest weighted leaf and to add the lowest
weighted candidate to join the current tree, one can be sure that there is no better neighbor available.
UpdateTabuLists(T cur

k ; T new
k ; InList; OutList): After a neighbor T new

k = T cur
k − eout + ein has been

chosen, the tabu lists InList and OutList are updated, i.e., ein is added to OutList and eout is added
to InList. Both tabu lists work as /rst-in-/rst-out lists with a given length tlten. The tabu lists have
the e3ect that an edge that just recently was removed from (respectively, has entered) the current
tree, cannot enter (respectively, be removed from) it in the near future.
Update(T cur

k ; T rb
k ; T gb

k ; nic): If f(T cur
k)¡f(T rb

k), then T rb
k is set to T cur

k . The same is done for
T gb
k . In contrast, if f(T cur

k)¿f(T rb
k) then nic is increased by one, where nic is the counter of the

number of successive iterations in which the restart-best solution was not improved.
PerformRestart(): If there is no eligible neighbor, or if the tabu list tenure tllen has exceeded its

maximum ttmax, a restart is performed as shown in Algorithm 2.

Algorithm 2 PerformRestart()
tlten ← ttmin
InitializeTabuLists(InList; OutList; tlten)
T cur
k ← GenerateInitialSolution()

T rb
k ← T cur

k
nic← 0

4. Evolutionary Computation approach

Evolutionary Computation (EC) algorithms [29–31] are widely used to tackle NP-hard combina-
torial optimization problems. They are inspired by nature’s capability to evolve living beings which
are well adapted to their environment. EC algorithms can shortly be characterized as computational
models of evolutionary processes working on populations of individuals. Individuals are in most
cases solutions to the problem under consideration. Usually EC algorithms apply operators, which
are called recombination or crossover operators, to recombine two or more individuals to produce
new individuals. In addition to that, operators that cause a self-adaptation of individuals are applied.
These operators are called mutation or modi=cation operators (depending on their structure). The
driving force in evolutionary algorithms is the selection of individuals based on their =tness. Individ-
uals with a higher /tness have a higher probability to be chosen as members of the next iterations’
population (or as parents for producing new individuals). This principle is called survival of the
=ttest in natural evolution. It is the capability of nature to adapt itself to a changing environment
which gave the inspiration for EC algorithms.

Our EC approach to tackle the edge-weighted KCT problem is characterized by (i) the use of
two heuristically guided crossover operators, by (ii) an ageing mechanism for individuals and by
(iii) the use of black-box local search procedures based on the neighborhood Nleaf as described in
Section 2 to improve individuals. The framework of our algorithm is shown in Algorithm 3, where
P denotes a population of n individuals, T gb

k denotes the best k-cardinality tree found so far in the
course of the search, and T ib

k denotes the iteration-best solution. We will refer to this algorithm as
EC KCT. Its components are outlined in the following.

8 C. Blum, M.J. Blesa / Computers & Operations Research () –

ARTICLE IN PRESS

Algorithm 3 EC for the KCT problem (EC KCT)
input: a problem instance (G;w; k)
T gb
k ← NULL

n← DeterminePopulationSize(G; k)
P ← GenerateInitialPopulation(n)
while termination conditions not met do

P ← ApplyCrossover(P)
P ← ApplyLocalSearch(P)
P ← ApplyEliteAction(P)
T ib
k ← argmin{f(Tk) |Tk ∈P}

Update(T gb
k ; T ib

k)
IncreaseAgeOfIndividuals(P)
P ← RemoveOverAgedIndividuals(P)
P ← P ∪ GenerateRandomIndividuals(n− |P|)

end while
output: T gb

k

DeterminePopulationSize(G; k): The population size n is set to �|E|=k� and is therefore a function
of |E| and k. In general, for smaller cardinalities bigger populations are needed, because the probabil-
ity that trees overlap (i.e., have edges in common) is smaller. This is important, as only k-cardinality
trees that overlap can be crossover partners (see below). We set the minimum population size to 50
and the maximum population size to 200.
GenerateInitialPopulation(n): The algorithm is initialized with a population of randomly generated

k-cardinality trees. This is in contrast to the initial solution in TS KCT, which was created in a greedy
manner. The reason is that we experimentally found a random initial population to give better results
than an initial population that was created in a greedy manner. Furthermore, all individuals have an
age that is initialized to 0 at the time of creation, and the age of an individual is incremented in case
it enters the next generation (later we are going to outline events that reset the age of individuals
to 0). The age of individuals is used to determine if an individual is still useful or not, i.e., when
the age limit is reached we assume the individual not to be useful anymore.
ApplyCrossover(P): For every k-cardinality tree Tk in the current population, a partner T p

k for
crossover is chosen among those individuals in P which have at least one edge in common with Tk .
The choice is done in a roulette-wheel-selection manner with respect to the inverse of the objective
function value f(·) of a tree. This means that trees of lower weight have a better chance to be
chosen as a crossover partner. If there is no individual with at least one edge in common with Tk

then no crossover can be performed and Tk does not enter the population of the next generation.
Two di3erent heuristically guided crossover operators are applied to the two crossover partners Tk

and T p
k . The U-crossover (for “Union”-crossover) aims at picking the good properties that distin-

guish one parent from the other and combining them in the o3spring, while the I-crossover (for
“Intersection”-crossover) aims at preserving the good properties both parents have in common in the
o3spring and to take the best from the rest. Both operators are, in some sense, complementary to each
other.

ARTICLE IN PRESS
C. Blum, M.J. Blesa / Computers & Operations Research () – 9

Algorithm 4 Framework for U-crossover and I-crossover
input: Two k-cardinality trees Tk and T p

k
E∪ ← E(Tk) ∪ E(T p

k)
E∩ ← E(Tk) ∩ E(T p

k)
t ← 1
E(T child

t)← {argmin{w(e = {v; v′}) | e∈E∩}}
V (T child

t)← {v; v′}
repeat

Choose set S according to equation (3) for U -crossover, resp. (4) for I -crossover
if S = ∅ then

e = {v; v′} ← argmin{w(e) | e∈ENH(T child
t) ∩ E∪}

else
e = {v; v′} ← argmin{w(e) | e∈ S}

end if
E(T child

t)← E(T child
t) ∪ {e}

V (T child
t)← V (T child

t) ∪ {v; v′}
t ← t + 1

until |E(T child
t)|= k

output: T child
k

The algorithmic framework for both operators is given in Algorithm 4, in which T child
t denotes

the partial k-cardinality tree at construction step t, which is constructed as the child of the input
k-cardinality trees Tk and T p

k . It remains to be speci/ed how set S (see Algorithm 4) is generated
in each case of crossover. In the case of U-crossover, S in construction step t is de/ned as follows:

S ← ENH(T child
t) ∩ (E∪ \ E∩); (3)

where ENH(T child
t) consists of all edges in G with exactly one end-point in T child

t (see Eq. (2)),
and E∪ and E∩ are the union and intersection of edges as de/ned in Algorithm 4. In U-crossover,
edges with a low weight that appear only in one of the two parents are preferred. On the contrary,
in I-crossover low-weighted edges are preferred that are common to both parents by de/ning S in
construction step t as follows:

S ← ENH(T child
t) ∩ E∩; (4)

where ENH(T child
t) is as described above. After producing two o3spring with parents Tk and T p

k , the
best tree among the /rst parent Tk and the two o3spring is chosen to enter the next population.
This means that the /rst parent tree is only replaced if at least one of the two o3spring is better.
Furthermore, only those individuals which are pairwise di3erent to all the other individuals already
in the population are introduced.
ApplyLocalSearch(P): To every individual produced by the crossover procedure we apply the best

improvement local search based on the neighborhood structure Nleaf as outlined in Section 2. If
the application of this local search improves an individual, we regard it as new by setting its age
back to 0.

10 C. Blum, M.J. Blesa / Computers & Operations Research () –

ARTICLE IN PRESS

ApplyEliteAction(P): As an elite action we apply a short run of our TS approach introduced in
Section 3 to the best individual of the current population. The duration of this TS run was chosen
to be 2 · k iterations.
Update(T gb

k ; T ib
k): In this function we update T gb

k , which is the best solution found since the start
of the algorithm, with the iteration-best solution T ib

k , i.e., T ib
k replaces T gb

k if f(T ib
k)¡f(T gb

k).
IncreaseAgeOfIndividuals(P): In this procedure the age of each individual of the new population

P is incremented.
RemoveOverAgedIndividuals(P): This procedure is applied to remove individuals that exceed the

age limit. For all the experiments we chose 10 as the age limit.
GenerateRandomIndividuals(n − |P|): There are several events that cause a population to shrink.

The /rst one is that no crossover partner can be found for an individual. In this case this individual
does not enter the population of the next generation. Furthermore, we take care that the individuals
of a population are pairwise di3erent, which means in practise that an individual produced by
crossover or the application of local search does not enter the next population if an equivalent
individual already exists in the population under construction. In order to keep the population size
/xed, we apply procedure GenerateRandomIndividuals(n−|P|) to generate n−|P| random individuals
as described in the generation of the initial population. These random individuals are then inserted
into the population.

In summary, our EC approach can be regarded as a population of interacting hill-climbers that
are replaced by new randomly generated hill-climbers once they reach their age limit.

5. Ant Colony Optimization approach

Ant Colony Optimization (ACO) [32–34] is a metaheuristic approach for solving hard combinato-
rial optimization problems. The inspiring source of ACO is the foraging behavior of real ants. While
walking from food sources to the nest and vice versa, ants deposit a substance called pheromone
on the ground. Paths marked by strong pheromone concentrations are more probable to be chosen
when deciding about a direction to go. This basic behavior is the basis for a cooperative interaction
which leads to the emergence of shortest paths, thus minimizing the length of the path between nest
and food source.

In ACO algorithms, an arti/cial ant incrementally constructs a solution by adding opportunely
de/ned solution components to a partial solution under construction. 3 The solution components to
be added are chosen probabilistically with respect to a parametrized probabilistic model, the so-called
pheromone model. A parametrized probabilistic model is speci/ed by a set T of model parameters.
In ACO algorithms, these model parameters are called pheromone trail parameters. The values of
the pheromone trail parameters are called pheromone values. The /rst ACO algorithm proposed was
Ant System (AS) [34]. In recent years some changes and extensions of AS have been proposed,
e.g., Ant Colony System (ACS) [35] and MAX-MIN Ant System (MMAS) [36].

Our approach is a MAX-MIN Ant System implemented in the Hyper-Cube Framework [37].
Implementing ACO algorithms in the Hyper-Cube Framework comes with several bene/ts.

3 Therefore, the ACO metaheuristic can be applied to any combinatorial optimization problem for which a constructive
heuristic can be de/ned.

ARTICLE IN PRESS
C. Blum, M.J. Blesa / Computers & Operations Research () – 11

An important one is the automatic scaling of the objective function. The basic framework of our
algorithm is shown in Algorithm 5, in which T is a set of pheromone trail parameters, na is the
number of ants used in every iteration, T j

k are solutions to the problem, and cf is a numerical value
that is called the convergence factor. Furthermore, T ib

k denotes the iteration-best solution, T rb
k is the

restart-best solution, and T gb
k is the best solution found from the start of the algorithm. We will refer

to this algorithm as ACO KCT. Its components are outlined in the following.

Algorithm 5 ACO for the KCT problem (ACO KCT)
input: a problem instance (G;w; k)
T gb
k ← NULL, T rb

k ← NULL; cf ← 0, global conv← FALSE
na ← DetermineNumberOfAnts(G; k)
InitializePheromoneValues(T)
while termination conditions not met do

for j = 1 to na do
T j
k ← ConstructSolution(T)

LocalSearch(T j
k)

end for
T ib
k ← argmin{f(T 1

k); : : : ; f(T
na
k }

T ib
k ← ApplyEliteAction(T ib

k)
ApplyPheromoneValueUpdate(cf; global conv;T; T ib

k ; T rb
k ; T gb

k)
Update(T ib

k ; T gb
k ; T rb

k)
cf ← ComputeConvergenceFactor(T; T ib

k)
if cf¿ 0:99 AND global conv= TRUE then

ResetPheromoneValues(T)
T rb
k ← NULL

global conv← FALSE
else

if cf¿ 0:99 then global conv← TRUE
end if

end while
output: T gb

k

DetermineNumberOfAnts(G; k): The number of ants na is (as the population size in the EC
approach) set to �|E|=k� and is therefore a function of |E| and k. We set the minimum number of
ants to 15 and the maximum number of ants to 50. These limits are lower than the limits for the
population size in the EC approach because the philosophy of our ACO approach is to focus quickly
on a certain area in the search space and to get the global perspective by performing restarts.
InitializePheromoneValues(T): We initialize the pheromone values to 0.5 because in the Hyper-

Cube Framework the pheromone values are limited to [0; 1], and therefore this setting gives equal
chance to both directions.
ConstructSolution(T): To build a solution, an ant starts from a randomly chosen edge and does

k − 1 construction steps as shown in Algorithm 6. At each step of the construction phase an edge
e∈ENH(Tt−1) (see Eq. (2)) is added to the (t − 1)-cardinality tree Tt−1, where t ∈{2; : : : ; k}. The
choice of the next edge to be added depends on the underlying pheromone model. The model that we

12 C. Blum, M.J. Blesa / Computers & Operations Research () –

ARTICLE IN PRESS

Algorithm 6 Ant construction phase
Choose an edge e∗ = {v; v′}∈E with probability p(e∗) = 'e∗∑

e∈E 'e

E(T1)← {e∗}
V (T1)← {v; v′}
for t = 2 to k do

e∗ = {v; v′} ← ChooseNextEdge(ENH(Tt−1))
E(Tt)← E(Tt−1) ∪ {e∗}
V (Tt)← V (Tt−1) ∪ {v; v′}

end for

chose consists of a pheromone trail parameter Te with pheromone value 'e for every edge e∈E(G).
Therefore, if |E(G)|=m we have m pheromone trail parameters. Given the set ENH(Tt−1), the next
edge is chosen in function ChooseNextEdge(ENH(Tt−1)) as follows: we draw a random number p
between 0 and 1 and, if p6 0:8, the next edge e∗ is chosen deterministically:

e∗ ← argmin
{
'e

1
w(e)

∣∣∣∣ e∈ENH(Tt−1)
}
: (5)

Otherwise the next edge e∗ is chosen probabilistically with the following transition probabilities:

p(e |Tt−1) =

'e=w(e)∑
e′∈ENH(Tt−1) 'e′=w(e

′)
if e∈ENH(Tt−1);

0 otherwise:

(6)

Eq. (6) shows that the transition probabilities are biased by the weights of the edges: the lower
the weight of an edge is, the higher its probability to be chosen. With this pheromone model the
algorithm tries to learn for every edge the desirability of having it in a solution. The fact of making
in 80% of the construction steps a deterministic decision leads the algorithm already at the beginning
of the search to relatively good areas in the search space. However, there is the danger that the
algorithm gets stuck more easily in local optima. On the other side, the advantage is a more eLcient
utilization of computation time, which is needed in order for the algorithm to be competitive with
the EC and the TS approach on big problem instances.
LocalSearch(T j

k): A best improvement local search based on the neighborhood structure Nleaf as
outlined in Section 2 is applied to every k-cardinality tree T j

k produced by the ants.
ApplyEliteAction(T ib

k): A short run of the TS approach as outlined in Section 3 is applied to T ib
k

(the best k-cardinality tree of each iteration) in order to further improve this solution. The duration
of the run was chosen to be 2 · k iterations, as for the elite action in the EC approach.
ApplyPheromoneUpdate(cf; global conv;T; T ib

k ; T rb
k ; T gb

k): Three di3erent solutions are used for
updating the pheromone values: (i) the best solution found in the current iteration T ib

k , (ii) the
restart-best solution T rb

k and, (iii) the best solution found since the start of the algorithm T gb
k . A

particularity is that the inTuence of each one of these three solutions is made dependent on the state
of convergence of the algorithm (given by the convergence factor cf) rather than on its objective
function value. To perform the update, /rst an update value *e for every edge e∈E(G) is computed:

*e ← +ib,(T ib
k ; e) + +rb,(T rb

k ; e) + +gb,(T
gb
k ; e); (7)

ARTICLE IN PRESS
C. Blum, M.J. Blesa / Computers & Operations Research () – 13

Table 1
The schedule used for values -, +ib, +rb and +gb depending on cf and on the Boolean variable global conv

global conv = FALSE global conv = TRUE

cf¡ 0:7 cf∈ [0:7; 0:95) cf¿ 0:95

- 0.15 0.1 0.05 0.1
+ib 2=3 1=3 0 0
+rb 1=3 2=3 1 0
+gb 0 0 0 1

where +ib is the weight of T ib
k ; +rb the weight of T rb

k , and +gb the weight of T gb
k such that +ib +

+rb + +gb = 1:0. The ,-function is de/ned as follows:

,(Tk; e) =

{
1 e∈E(Tk);

0 otherwise:
(8)

Depending on the convergence factor cf, the weight of each of the three solutions is determined.
The convergence factor cf is a value providing an estimate about the state of convergence of the
system. At each iteration, the convergence factor is computed in the following way:

cf ←
∑

e∈E(T ib
k)

'e

k · 'max
; (9)

where 'max is an upper limit for the pheromone values (see below). The convergence factor cf can
therefore only assume values between 0 and 1. It is clear that if cf is close to 1 then the system is
in a state where the probability to produce solution T ib

k is close to 1 and therefore the probability
to produce a solution di3erent to T ib

k is close to 0. This is what we informally call the state of
convergence for our system. After preliminary experiments, we chose the schedule of settings for
values -, +ib, +rb and +gb as shown in Table 1. To all pheromone values 'e we then apply the
following update rule:

'e ← fmmas('e + - · (*e − 'e)); (10)

where -∈ (0; 1] is a constant called learning rate, and

fmmas(x) =

'min; x¡ 'min;

x; 'min6 x6 'max;

'max; x¿ 'max:

(11)

Remember that by using the Hyper-Cube Framework (see [37]) the pheromone values are limited to
[0; 1]. Additionally, we introduce a lower bound 'min for the pheromone values and set it to 0.001,
and an upper bound 'max, which is set to 0.999. These lower and upper bounds are used to prevent
the algorithm from converging to a solution. Therefore, after applying the pheromone update we set
those pheromone values that exceed the upper bound back to the upper bound and those that fall
below the lower bound back to the lower bound.

14 C. Blum, M.J. Blesa / Computers & Operations Research () –

ARTICLE IN PRESS

At the beginning of the search process the learning rate is set to the value 0.15 (see Table 1),
because we want our algorithm to focus quite quickly on an area in the search space. Once the
convergence factor cf is bigger than 0.7 the learning rate is decreased in order to perform a more
careful search, and also the inTuence of the restart-best solution is increased. Once the algorithm is
near the state of convergence, only the restart-best solution is used to update the pheromone values
and we decrease the learning rate even more in the hope to /nd a better solution near the restart-best
solution. When the limit for the convergence factor is reached (i.e., cf¿ 0:99), the best solution
found since the start of the algorithm is used to update the pheromone values. The reason behind
that is the hope to /nd a better solution in-between two good solutions which are the restart-best
and the overall best solution in this case. Once the limit for the convergence factor is reached again,
a restart is performed.
Update(T ib

k ; T rb
k ; T gb

k): In this procedure we replace T rb
k with T ib

k if f(T ib
k)¡f(T rb

k). The same is
done for T gb

k .
ComputeConvergenceFactor(T; T ib

k): The convergence factor cf is re-computed in every iteration
according to Eq. (9).
ResetPheromoneValues(T): In this procedure all pheromone values 'e are set back to the starting

value 0.5.

6. Experimental comparison

We decided for C++ as the programming language and we compiled all our software with
the GNU C++ compiler gcc, version 2.95.3. Furthermore, we implemented the three metaheuristic
approaches on the same data structures. Finally, all the metaheuristic approaches were tested on a
beowulf cluster consisting of 8 identical PCs with AMD Athlon 1100 MHz CPU under RedHat Linux
7.0. As mentioned already in the respective sections, our ACO approach is denoted by ACO KCT,
our EC approach by EC KCT, and our TS approach by TS KCT.

First, we show the competitiveness of our algorithms by applying them to existing benchmark
instances for which results already exist. In 2001, Blesa and Xhafa used a software tool developed
by JNornsten and LHkketangen [21] for producing 35 edge-weighted 4-regular graphs of di3erent
sizes (i.e., the smallest ones on 25 nodes, and the biggest ones on 1000 nodes). Then, for cardinality
k=20, they applied the Tabu Search algorithm by JNornsten and LHkketangen [21] and their own Tabu
Search algorithm [20] to all these benchmark instances and published the results at [26]. In order
to compare with them, we also applied our three algorithms for cardinality k = 20 to each of these
benchmark instances. The results are shown in Table 2. They show that for 12 out of 35 benchmark
instances we improve the best known solution. In the remaining 23 cases our algorithms /nd the
same solution quality as was found either by the Tabu Search by JNornsten and LHkketangen, or by
the Tabu Search by Blesa and Xhafa. But more importantly, the results show that our algorithms /nd
for each problem instance the same best solution in a very short amount of computation time. This
means that most of these benchmark instances are too small for showing di3erences between our
algorithms. Furthermore, all the 35 graphs are 4-regular and therefore very special types of graphs.
Therefore, we decided to test our algorithms on graphs with di3erent characteristics, and also on a
whole range of di3erent cardinalities rather than just on one particular cardinality (i.e., k = 20).

ARTICLE IN PRESS
C. Blum, M.J. Blesa / Computers & Operations Research () – 15

Table 2
Comparison of the results obtained by ACO KCT, EC KCT, and TS KCT with the best known solutions that were
obtained by either the Tabu Search by JNornsten and LHkketangen [21], or by the Tabu Search by Blesa and Xhafa [20]
on the 35 4-regular benchmark instances (cardinality k = 20) taken from [26]

Instance Best ACO KCT EC KCT TS KCT Time
known limit (s)

Best Average
√
/2 Ut Best Average

√
/2 Ut Best Average

√
/2 Ut

g25-4-01 219 ∗219 219 0 0.004 ∗219 219 0 0.084 ∗219 219 0 0.004 2
g25-4-02 607 ∗607 607 0 0.006 ∗607 607 0 0.076 ∗607 607 0 0.016 2
g25-4-03 464 ∗464 464 0 0.006 ∗464 464 0 0.086 ∗464 464 0 0.008 2
g25-4-04 620 ∗620 620 0 0.01 ∗620 620 0 0.073 ∗620 620 0 0.024 2
g25-4-05 573 ∗573 573 0 0.017 ∗573 573 0 0.087 ∗573 573 0 0.049 2

g50-4-01 460 ∗460 460 0 0.387 ∗460 461.5 1.538 0.765 ∗460 460.3 0.923 0.542 3
g50-4-02 421 ∗421 421 0 0.028 ∗421 421 0 0.13 ∗421 421 0 0.028 3
g50-4-03 565 ∗565 565 0 0.154 ∗565 565 0 0.477 ∗565 565 0 0.26 3
g50-4-04 434 ∗434 434 0 0.016 ∗434 434 0 0.118 ∗434 434 0 0.002 3
g50-4-05 387 (391) ∗387 387 0 0.058 ∗387 387 0 0.216 ∗387 387 0 0.058 3

g75-4-01 366 ∗366 366 0 0.154 ∗366 366 0 0.179 ∗366 366 0 0.02 4
g75-4-02 295 ∗295 295 0 0.394 ∗295 295 0 0.21 ∗295 295 0 0.016 4
g75-4-03 412 (421) ∗412 412 0 0.648 ∗412 412.399 0.502 1.776 ∗412 412 0 0.013 4
g75-4-04 430 (432) ∗430 430 0 0.566 ∗430 430.1 0.307 1.385 ∗430 430 0 0.141 4
g75-4-05 284 ∗284 284 0 0.016 ∗284 284 0 0.125 ∗284 284 0 0.01 4

g100-4-01 363 ∗363 363.25 1.118 1.048 ∗363 363 0 0.266 ∗363 363 0 0.134 5
g100-4-02 335 (338) ∗335 335.449 1.099 1.077 ∗335 335.149 0.67 1.084 ∗335 335 0 0.128 5
g100-4-03 412 ∗412 412 0 0.014 ∗412 412 0 0.143 ∗412 412 0 0.02 5
g100-4-04 442 ∗442 442 0 0.018 ∗442 442 0 0.172 ∗442 442 0 0.063 5
g100-4-05 388 ∗388 388 0 0.219 ∗388 388.449 2.012 1.485 ∗388 388 0 0.164 5

g200-4-01 308 ∗308 308 0 0.074 ∗308 308 0 0.365 ∗308 308 0 0.057 10
g200-4-02 299 ∗299 299 0 0.068 ∗299 299 0 0.424 ∗299 299 0 0.156 10
g200-4-03 300 ∗300 300 0 0.038 ∗300 300 0 0.247 ∗300 300 0 0.029 10
g200-4-04 304 (310) ∗304 304 0 0.719 ∗304 304 0 1.058 ∗304 304 0 0.304 10
g200-4-05 357 ∗357 357 0 0.047 ∗357 357 0 0.262 ∗357 357 0 0.026 10

g400-4-01 253 ∗253 253 0 0.075 ∗253 253 0 0.27 ∗253 253 0 0.021 20
g400-4-02 328 (338) ∗328 328.699 3.13 3.998 ∗328 328 0 2.502 ∗328 328 0 0.191 20
g400-4-03 302 ∗302 302 0 1.663 ∗302 302.05 0.223 4.322 ∗302 302 0 0.231 20
g400-4-04 306 (314) ∗306 306 0 0.624 ∗306 306 0 1.056 ∗306 306 0 0.088 20
g400-4-05 320 ∗320 320 0 1.84 ∗320 320 0 2.387 ∗320 320 0 0.303 20

g1000-4-01 263 (270) ∗263 263.899 1.97 6.415 ∗263 263.699 1.838 5.293 ∗263 263.5 1.235 8.423 20
g1000-4-02 281 (292) ∗281 281.3 1.341 2.837 ∗281 281.3 1.341 6.716 ∗281 281 0 1.036 20
g1000-4-03 289 (295) ∗289 289 0 1.445 ∗289 290.8 5.54 6.357 ∗289 289 0 0.87 20
g1000-4-04 298 (306) ∗298 298 0 3.334 ∗298 305.6 1.788 3.367 ∗298 298 0 6.291 20
g1000-4-05 268 (280) ∗268 268 0 0.391 ∗268 268 0 1.292 ∗268 268 0 0.072 20

Column 1 contains the instance name. The second column contains the best known solution value (if it was improved
by our algorithms then the old best known solution is given in brackets). Then, there are 4 columns for each of our three
algorithms. The /rst column gives the best found solutions in 20 runs (an asterisk denotes that it is equal to the (new)
best known solution, and bold font indicates that the result is better or equal to the result of the other two approaches),
whereas the second column gives the average of the best solutions in 20 runs. The standard deviation of this average
is given in column 3, and the average computation time that was needed to /nd the best solution in a run is given in
column 4.

16 C. Blum, M.J. Blesa / Computers & Operations Research () –

ARTICLE IN PRESS

6.1. A new set of benchmark instances

Regarding the lack of suitable problem instances, we decided to initiate a diverse and challenging
set of benchmark instances. First of all we randomly generated 10 grid graph instances of varying
size, because, as discovered in earlier papers (see for example [25]), the KCT problem seems to
be especially diLcult to solve in grid graph instances. Furthermore, we intended to incorporate
problem instances of di3erent edge-density and di3erent variance of vertex degree. Considering the
existence of many graph-based combinatorial optimization problems, we decided to borrow graphs
from benchmark instance sets for other problems. We chose one of the Leighton graphs from the
graph coloring benchmark set available from the OR-Library [38]. This graph is characterized by a
high variance in vertex degrees, which is one of the indicators for the graph being clustered. We
also chose 5 di3erent graphs from the Steiner tree benchmark set that are also available from the
OR-Library. This is justi/ed by the fact that the Steiner tree problem is also a problem where trees
are sought in a graph. Additionally, as mentioned above, we chose 4 of the biggest problem instances
that were generated by Blesa and Xhafa using the software tool by JNornsten and LHkketangen [21].
For all the graphs (except the 4 last mentioned, which already had assigned edge weights) we
generated edge weights uniformly at random from the interval [1; : : : ; 100]. An overview on the new
set of benchmark instances is given in Table 3. The column with the heading U0 contains the average
vertex degrees of the graphs and the column with the heading /2(0) contains the variance of the
vertex degrees. Our benchmark set can be obtained from [39].

Table 3
The new set of benchmark problem instances

Graph Type |V | |E| U0 /2(0) Origin

bb15x15 1.gg Grid graph 225 420 3.73 0.48 New
bb15x15 2.gg Grid graph 225 420 3.73 0.48 New
bb45x5 1.gg Grid graph 225 400 3.55 0.53 New
bb45x5 2.gg Grid graph 225 400 3.55 0.53 New
bb33x33 1.gg Grid graph 1089 2112 3.87 0.33 New
bb33x33 2.gg Grid graph 1089 2112 3.87 0.33 New
bb100x10 1.gg Grid graph 1000 1890 3.78 0.42 New
bb100x10 2.gg Grid graph 1000 1890 3.78 0.42 New
bb50x50 1.gg Grid graph 2500 4900 3.92 0.27 New
bb50x50 2.gg Grid graph 2500 4900 3.92 0.27 New
g400-4-01.g 4-Regular graph 400 800 4.00 0.00 KCT problem [26]
g400-4-05.g 4-Regular graph 400 800 4.00 0.00 KCT problem [26]
g1000-4-01.g 4-Regular graph 1000 2000 4.00 0.00 KCT problem [26]
g1000-4-05.g 4-Regular graph 1000 2000 4.00 0.00 KCT problem [26]
steinc5.g Sparse graph 500 625 2.5 1.65 Steiner tree problem
steind5.g Sparse graph 1000 1250 2.5 1.57 Steiner tree problem
steine5.g Sparse graph 2500 3125 2.5 1.57 Steiner tree problem
steinc15.g Dense graph 500 2500 10.0 3.08 Steiner tree problem
steind15.g Dense graph 1000 5000 10.0 3.22 Steiner tree problem
le450 15a.g Dense graph 450 8168 36.30 16.83 Leighton graph, graph coloring

ARTICLE IN PRESS
C. Blum, M.J. Blesa / Computers & Operations Research () – 17

6.1.1. Cardinalities
We applied our algorithms to each problem instance for several cardinalities from the range of
possible cardinalities. As minimal and maximal cardinality we chose 2, respectively |V | − 2. Note,
that for cardinality 1 the problem is trivial, and for cardinality |V | − 1 the problem is equivalent to
the minimum spanning tree problem which is polynomially solvable for example by Prims’ algorithm
[40]. From the range between the minimum and maximum cardinality we chose for each instance
about 10 equidistantly distributed cardinalities. This was done in order to be able to study the
possibly changing performance of the algorithms over the whole range of cardinalities.

6.1.2. Time limits
For the KCT problem it is a non-trivial task to /nd reasonable time limits for the algorithms,

because they do not only depend on the number of edges and the number of nodes of the graph, but
also on the cardinality k. In order to avoid arti/cial time limits we generated them for our algorithms
as follows. We applied an enhanced version of the heuristic method K-CardPrim that was proposed
in [16] to each combination of benchmark instance and cardinality. This heuristic works as follows:
Starting from each node of the graph, a k-cardinality tree is constructed by applying a truncated
version of Prims’ algorithm [40]. To each of these k-cardinality trees we applied our steepest descent
local search method (based on the neighborhood Nleaf as outlined in Section 2). As time limits for
our metaheuristics we then chose for each combination of instance and cardinality 5 times the time
that was needed by K-CardPrim. However, especially for bigger graphs, this time limit would have
been impractically high. This was also due to the fact that we wanted to run our algorithms 20 times
for every combination of instance and cardinality in order to increase the statistical signi/cance of our
results. Therefore, we have set the time limit for instances bb50x50 1.gg, bb50x50 2.gg, steine5.g,
steind15.g and le450 15a.g for all cardinalities to the time that was needed by K-CardPrim (instead
of 5 times that time). The results and the computation times of the heuristic K-CardPrim can be
found at [39], as well as in an extended version of this paper [41].

6.2. Results and comparison

The amount of computation time that was needed to conduct all our experiments was more than
9 months of CPU time. Due to space limitations we present the numerical results that we obtained
in a summarized way. 4 Figs. 1 and 2 show the relative behavior of our algorithms in comparison
over the range of cardinalities.

First, we explain how to read the graphs that are shown in Fig. 2, which shows the average
behavior of our algorithms over 20 runs (henceforth denoted by average-performance), and in
Fig. 1, which shows the behavior of our algorithms in terms of the best solution they found in
20 runs (henceforth denoted by best-performance). In the 5 plots of Fig. 1, as well as in the 5 plots
of Fig. 2, the x-axis shows the relative cardinalities, which are obtained by mapping the absolute
cardinalities to the interval (0; 1). For example, cardinality 10 for an instance with |V | = 100 is
mapped to 10

100 = 0:1. This is done in order to be able to merge the results that our algorithms
obtained on several instances of di3erent size. The y-axis shows the performance of an algorithm in
relation to the performance of the other two algorithms for a relative cardinality on a set of instances.

4 The numerical results are presented in an extended version of the paper [41], as well as on the KCTLIB [39].

18 C. Blum, M.J. Blesa / Computers & Operations Research () –

ARTICLE IN PRESS

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

re
la

tiv
e

be
st

-p
er

fo
rm

an
ce

 (
in

 %
)

relative cardinality

ACO_KCT
EC_KCT
TS_KCT

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

re
la

tiv
e

be
st

-p
er

fo
rm

an
ce

 (
in

 %
)

relative cardinality

ACO_KCT
EC_KCT
TS_kCT

 0

 0.5

 1

 1.5

 2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

re
la

tiv
e

be
st

-p
er

fo
rm

an
ce

 (
in

 %
)

relative cardinality

ACO_KCT
EC_KCT
TS_KCT

 0

 0.5

 1

 1.5

 2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

re
la

tiv
e

be
st

-p
er

fo
rm

an
ce

 (
in

 %
)

relative cardinality

ACO_KCT
EC_KCT
TS_KCT

 0

 2

 4

 6

 8

 10

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

re
la

tiv
e

be
st

-p
er

fo
rm

an
ce

 (
in

 %
)

relative cardinality

ACO_KCT
EC_KCT
TS_KCT

(a)

(b)

(d) (e)

(c)

Fig. 1. Comparison of the three algorithms in terms of best-performance. The /ve plots show the relative performance of
the three algorithms over the range of relative cardinalities for di3erent subsets of our benchmark instances (as indicated by
the sub/gure labels). In general, the lower a curve, the better the corresponding algorithm. For a more detailed explanation
see the beginning of Section 6.2. (a) Summary of all results; (b) summary of the results for grid graphs; (c) summary of
the results for regular graphs; (d) summary of the results for sparse graphs; (e) summary of the results for dense graphs.

Consider for example the case in which for the relative cardinality 0:1 ACO KCT has a y-value
of 0:4, EC KCT has a y-value of 1:2 and TS KCT has a y-value of 1.8. This means that for the
set of considered problem instances, for relative cardinality 0.1 the performance of ACO KCT was
on average 0.4 percent above the best algorithm performance, whereas the performance of EC KCT
was on average 1.2 percent above the best algorithm performance, and so on. In short, the lower a
curve, the better.

ARTICLE IN PRESS
C. Blum, M.J. Blesa / Computers & Operations Research () – 19

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

re
la

tiv
e

av
er

ag
e-

pe
rf

or
m

an
ce

 (
in

 %
)

relative cardinality

ACO_KCT
EC_KCT
TS_KCT

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

re
la

tiv
e

av
er

ag
e-

pe
rf

or
m

an
ce

 (
in

 %
)

relative cardinality

ACO_KCT
EC_KCT
TS_KCT

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

re
la

tiv
e

av
er

ag
e-

pe
rf

or
m

an
ce

 (
in

 %
)

relative cardinality

ACO_KCT
EC_KCT
TS_KCT

 0

 1

 2

 3

 4

 5

 6

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

re
la

tiv
e

av
er

ag
e-

pe
rf

or
m

an
ce

 (
in

 %
)

relative cardinality

 ACO_KCT
 EC_KCT
 TS_KCT

 0

 2

 4

 6

 8

 10

 12

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

re
la

tiv
e

av
er

ag
e-

pe
rf

or
m

an
ce

 (
in

 %
)

relative cardinality

ACO_KCT
EC_KCT
TS_KCT

(a)

(b) (c)

(d) (e)

Fig. 2. Comparison of the three algorithms in terms of average-performance. The /ve plots show the relative performance of
the three algorithms over the range of relative cardinalities for di3erent subsets of our benchmark instances (as indicated by
the sub/gure labels). In general, the lower a curve, the better the corresponding algorithm. For a more detailed explanation
see the beginning of Section 6.2. (a) Summary of all results; (b) summary of the results for grid graphs; (c) summary of
the results for regular graphs; (d) summary of the results for sparse graphs; (e) summary of the results for dense graphs.

Figs. 1(a) and 2(a) show the relative performance of our algorithms when merged over all
considered problem instances. We can observe, that in general all our algorithms are quite close
together. They are in general within 2% in terms of best-performance as well as in terms of
average-performance, except for ACO KCT that decreases in performance for the high end of the
cardinality range. However, for about the /rst 60% of the cardinality range ACO KCT is in terms
of both, best-performance as well as average-performance, the best algorithm. Both, EC KCT and

20 C. Blum, M.J. Blesa / Computers & Operations Research () –

ARTICLE IN PRESS

TS KCT, are inferior to ACO KCT in the /rst 60% of the cardinality range. However, they show
clear advantages in the last 40% of the cardinality range, namely for bigger cardinalities. It is interest-
ing to note that EC KCT seems to have a slight advantage over TS KCT in terms of best-performance
(as can be seen in Fig. 1(a)), whereas TS KCT seems to have slight advantages over EC KCT in
terms of average-performance (as can be seen in Fig. 2(a)). This indicates the robustness of TS KCT.

In order to study in more detail the relative performance of our algorithms on subclasses of our set
of benchmark instances, we applied the same kind of analysis for subsets of our set of benchmark
instances. We identi/ed the following 4 subsets of instances with di3erent characteristics:

• Subset 1: The 10 new grid graphs (see Figs. 1(b) and 2(b));
• Subset 2: The 4 4-regular graphs from the test set at [26] (see Figs. 1(c) and 2(c));
• Subset 3: The 3 sparse graphs steinc5.g, steind5.g and steine5.g (see Figs. 1(d) and 2(d));
• Subset 4: The 3 dense graphs steinc15.g, steind15.g and le450 15a.g (see Figs. 1(e) and 2(e));

Results on subsets 1 and 2. On the grid graphs and the 4-regular graphs ACO KCT has even
stronger advantages over the other two approaches for the /rst 60%–70% of the cardinality range.
And even though ACO KCT is inferior to the other two approaches for the rest of the cardinalities,
the performance is just slightly worse (on average not more than 1%). On the 4-regular graphs all
three approaches are over the whole cardinality range in terms of best-performance as well as in
terms of average-performance quite close together (within about 1%).

Results on subset 3. The results for sparse graphs give a di3erent impression of the relative
performance of our three approaches. TS KCT is in both performance measures (best-performance
as well as average-performance) the best algorithm for the second half of the cardinality range. In
the /rst half of the cardinality range, TS KCT has slight disadvantages compared to the other two
approaches in terms of best-performance. Even more, the average-performance of TS KCT in the
/rst half of the cardinality range indicates that it is not very robust for smaller cardinalities in sparse
graphs. This can be explained as follows. As the neighborhood Nleaf only allows the removal of
leaf edges from a k-cardinality tree, a “bad” edge that has a relatively high distance to leaf edges
can only be removed from the tree by basically leaving the current area of the search space. So,
even if TS KCT manages to get rid of such a bad edge, it is diLcult to /nd the way back to this
area of the search space, as many of the edges from this area will be in the tabu list. This problem
is not as apparent in dense graphs, because there are many more edges available. When comparing
ACO KCT with EC KCT on sparse graphs, we note that the ACO approach is consistently better
than the EC approach in both performance measures, except for the average-performance at about
20% into the cardinality range, where the ACO approach seems to have some diLculties.

Results on subset 4. When comparing the three approaches on dense graphs it immediately
becomes clear that ACO KCT has diLculties there and is clearly outperformed by EC KCT and
TS KCT over the whole cardinality range. The reason for that might be, that because of the high
number of edges in relation to the number of nodes the convergence speed is much lower and more
computation time might be required in order to reach good solutions. In terms of best-performance
EC KCT and TS KCT are very close together. However, in terms of average-performance TS KCT
outperforms EC KCT. Also, the computation times needed by TS KCT in order to /nd its best
solutions are much lower than the computation times needed by EC KCT (see [41,39]). The fact
that TS KCT appears to be the best approach for dense graphs con/rms our explanation for the
weakness of TS KCT on sparse graphs.

ARTICLE IN PRESS
C. Blum, M.J. Blesa / Computers & Operations Research () – 21

Summary. Our results show that the characteristics of a problem instance as well as the size of
the cardinality have a high inTuence on the behavior of our three approaches. This leads to the
fact that none of our metaheuristic approaches can be identi/ed as being overall the best one. It is
rather the case that di3erent metaheuristic approaches have advantages for certain classes of problem
instances (e.g., TS KCT is the best approach for dense graphs), or certain ranges of cardinalities
(e.g., ACO KCT is generally the best approach for small to medium size cardinalities). This outcome
is very much as expected, as for most combinatorial optimization problems where di3erent classes of
problem instances are available it does not exist “one” best metaheuristic approach. As an example
we mention the Quadratic Assignment Problem (QAP), which was extensively studied and tackled
by many researchers. For random instances TS approaches are generally best, whereas for structured
instances metaheuristics such as ACO, EC, or Iterated Local Search (ILS) reach best performance.

7. Conclusions and outlook

We proposed three di3erent metaheuristic approaches to tackle the edge-weighted k-cardinality
tree (KCT) problem. These are a Tabu Search approach that is characterized by a dynamic tabu list
length for balancing intensi/cation and diversi/cation, a new Evolutionary Computation approach
based on two heuristically guided crossover operators, and an Ant Colony Optimization approach.
All our approaches use a simple neighborhood structure that is eLcient to compute. The Tabu Search
uses this neighborhood structure for performing moves, whereas the Evolutionary Computation and
the Ant Colony Optimization approach use this neighborhood structure in terms of black-box local
search procedures for improving solutions. First, we showed the competitiveness of our algorithms
by applying them to existing benchmark instances and comparing the results to existing approaches.
Then, we developed a diverse set of benchmark instances containing graphs from several di3erent
classes of graphs, such as grid graphs, regular graphs, dense graphs and sparse graphs. Finally,
we conducted a large amount of experiments and presented the results in graphical as well as in
numerical form. The results showed that the performance of our metaheuristic approaches is largely
determined by the graph class and the cardinality. This result is not surprising as this is the case for
many other hard combinatorial optimization problems such as for example the Quadratic Assignment
Problem. In the future it might be interesting to explore the use of more expensive neighborhood
structures for the local search procedures. Finally, we invite other researchers to implement their
algorithms on the same basic data structures in order to improve comparability with our results.
We also welcome the proposal of additional benchmark instances such as random graphs, geometric
graphs or small-world graphs.

Acknowledgements

Christian Blum acknowledges support by the “Metaheuristics Network”, a Research Training Net-
work funded by the Improving Human Potential program of the CEC, Grant HPRN-CT-1999-00106.
The information provided is the sole responsibility of the authors and does not reTect the Commu-
nity’s opinion. The Community is not responsible for any use that might be made of data appearing
in this publication. Maria J. Blesa acknowledges support by the Catalan Research Council of the

22 C. Blum, M.J. Blesa / Computers & Operations Research () –

ARTICLE IN PRESS

Generalitat de Catalunya (Grant 2001FI-00659), by the FET Programme of the EU under Contract
Nos. IST-1999-14186 (ALCOM-FT) and IST-2001-33116 (FLAGS) and by the Spanish CICYT
Projects TIC-2000-1970-CE, TIC-2001-4917-E and TIC-2002-04498-C05-03 (TRACER).

References

[1] Hamacher HW, JNornsten K, MaLoli F. Weighted k-cardinality trees. Technical Report 91.023, Politecnico di Milano,
Dipartimento di Elettronica, Italy, 1991.

[2] Hamacher HW, JNornsten K. Optimal relinquishment according to the Norwegian petrol law: a combinatorial
optimization approach. Technical Report No. 7/93, Norwegian School of Economics and Business Administration,
Bergen, Norway, 1993.

[3] Foulds LR, Hamacher HW, Wilson J. Integer programming approaches to facilities layout models with forbidden
areas. Annals of Operations Research 1998;81:405–17.

[4] Foulds LR, Hamacher HW. A new integer programming approach to (restricted) facilities layout problems allowing
Texible facility shapes. Technical Report 1992–3, University of Waikato, Department of Management Science, 1992.

[5] Philpott AB, Wormald NC. On the optimal extraction of ore from an open-cast mine. New Zealand: University of
Auckland; 1997.

[6] BorndNorfer R, Ferreira C, Martin A. Matrix decomposition by branch-and-cut. Technical Report, Konrad-Zuse-
Zentrum fNur Informationstechnik, Berlin, 1997.

[7] BorndNorfer R, Ferreira C, Martin A. Decomposing matrices into blocks. SIAM Journal on Optimization 1998;9(1):
236–69.

[8] Cheung SY, Kumar A. ELcient quorumcast routing algorithms. In: Proceedings of INFOCOM’94. Los Alamitos,
USA, Silver Spring, MD: IEEE Society Press; 1994.

[9] Garg N, Hochbaum D. An O(log k) approximation algorithm for the k minimum spanning tree problem in the plane.
Algorithmica 1997;18(1):111–21.

[10] Fischetti M, Hamacher HW, JNornsten K, MaLoli F. Weighted k-cardinality trees: complexity and polyhedral structure.
Networks 1994;24:11–21.

[11] Marathe MV, Ravi R, Ravi SS, Rosenkrantz DJ, Sundaram R. Spanning trees short or small. SIAM Journal on
Discrete Mathematics 1996;9(2):178–200.

[12] MaLoli F. Finding a best subtree of a tree. Technical Report 91.041, Politecnico di Milano, Dipartimento di
Elettronica, Italy, 1991.

[13] A. Zelikovsky, D. Lozevanu, Minimal and bounded trees. In: Tezele Cong. XVIII Acad. Romano-Americane,
Kishinev, 1993. p. 25–6.

[14] Freitag J. Minimal k-cardinality trees. Master’s thesis, Department of Mathematics, University of Kaiserslautern,
Germany, 1993 [in German].

[15] Uehara R. The number of connected components in graphs and its applications. IEICE Technical Report COMP99-10,
Natural Science Faculty, Komazawa University, Japan, 1999.

[16] Ehrgott M, Freitag J, Hamacher HW, MaLoli F. Heuristics for the k-cardinality tree and subgraph problem.
Asia-Paci/c Journal of Operational Research 1997;14(1):87–114.

[17] Ehrgott M, Freitag J. K TREE/K SUBGRAPH: a program package for minimal weighted k-cardinality-trees and
-subgraphs. European Journal of Operational Research 1996;1(93):214–25.

[18] Blum C, Roli A. Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM
Computing Surveys 2003;35(3):268–308.

[19] Blesa MJ, Moscato P, Xhafa F. A memetic algorithm for the minimum weighted k-cardinality tree subgraph
problem. In: Proceedings of the Metaheuristics International Conference MIC’2001, vol. 1, Porto, Portugal, July 2001.
p. 85–90.

[20] Blesa MJ, Xhafa F. A C++ implementation of tabu search for k-cardinality tree problem based on generic
programming and component Reuse. In: Net.ObjectDays 2000 Tagungsband, Erfurt, Germany, 2000. p. 648–52.
Net.ObjectDays-Forum.

ARTICLE IN PRESS
C. Blum, M.J. Blesa / Computers & Operations Research () – 23

[21] JNornsten K, LHkketangen A. Tabu search for weighted k-cardinality trees. Asia-Paci/c Journal of Operational
Research 1997;14(2):9–26.

[22] LHkketangen A. Tabu search—using the search experience to guide the search process. An introduction with
examples. AICOM 1995;8(2):78–85.

[23] MladenoviZc N, Uro[seviZc D. Variable neighborhood search for the k-cardinality tree problem. In: Proceedings of the
Metaheuristics International Conference MIC’2001, vol. 2, 2001. p. 743–7.

[24] Blum C. Ant colony optimization for the edge-weighted k-cardinality tree problem. In: Langdon WB, CantZu-Paz E,
Mathias K, Roy R, Davis D, Poli R, Balakrishnan K, Honavar V, Rudolph G, Wegener J, Bull L, Potter MA, Schultz
AC, Miller JF, Burke E, Jonoska N, editors. Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-2002). San Mateo, CA: Morgan Kaufmann Publishers; 2002. p. 27–34.

[25] Blum C, Ehrgott M. Local search algorithms for the k-cardinality tree problem. Discrete Applied Mathematics
2003;128:511–40.

[26] MALLBA-Project. www.lsi.upc.es/∼mallba/public/library/TabuSearch/minktree.html, 2001.
[27] Glover F. Future paths for integer programming and links to arti/cial intelligence. Computers and Operations Research

1986;5:533–49.
[28] Glover F, Laguna M. Tabu search. Dordrecht: Kluwer Academic Publishers; 1997.
[29] BNack T. Evolutionary algorithms in theory and practice. New York: Oxford University Press; 1996.
[30] Fogel DB. An introduction to simulated evolutionary optimization. IEEE Transactions on Neural Networks

1994;5(1):3–14.
[31] Hertz A, Kobler D. A framework for the description of evolutionary algorithms. European Journal of Operational

Research 2000;126:1–12.
[32] Dorigo M. Optimization, learning and natural algorithms. Ph.D. thesis, DEI, Politecnico di Milano, Italy, 1992, 140pp

[in Italian].
[33] Dorigo M, Di Caro G, Gambardella LM. Ant algorithms for discrete optimization. Arti/cial Life 1999;5(2):137–72.
[34] Dorigo M, Maniezzo V, Colorni A. Ant system: optimization by a colony of cooperating agents. IEEE Transactions

on Systems, Man and Cybernetics—Part B 1996;26(1):29–41.
[35] Dorigo M, Gambardella LM. Ant Colony System: a cooperative learning approach to the traveling salesman problem.

IEEE Transactions on Evolutionary Computation 1997;1(1):53–66.
[36] StNutzle T, Hoos HH. MAX–MIN ant system. Future Generation Computer Systems 2000;16(8):889–914.
[37] Blum C, Roli A, Dorigo M. HC-ACO: the hyper-cube framework for ant colony optimization. In: Proceedings of

Metaheuristics International Conference MIC’2001. Porto, Portugal, July 2001. p. 399–403.
[38] Beasley JE. OR-library: distributing test problems by electronic mail. Journal of the Operational Research Society

1990;41(11):1069–72.
[39] KCTLIB. http://iridia.ulb.ac.be/∼cblum/kctlib/, 2003.
[40] Cormen T, Leisersoon C, Rivest R. Introduction to algorithms 2nd ed. Cambridge, MA: MIT Press; and New York:

McGraw-Hill; 2001.
[41] Blum C, Blesa MJ. Metaheuristics for the edge-weighted k-cardinality tree problem. Technical Report

TR/IRIDIA/2003-02, IRIDIA, UniversitZe Libre de Bruxelles, Belgium, 2003. Also available as technical report
LSI-03-1-R, LSI, Universitat Polit\ecnica de Catalunya, Spain.

http://www.lsi.upc.es/~mallba/public/library/TabuSearch/minktree.html
http://iridia.ulb.ac.be/~cblum/kctlib/

	New metaheuristic approaches for the edge-weighted k-cardinality tree problem
	Introduction
	Existing approaches
	Our contribution

	Common neighborhood structure
	Tabu Search approach
	Evolutionary Computation approach
	Ant Colony Optimization approach
	Experimental comparison
	A new set of benchmark instances
	Cardinalities
	Time limits

	Results and comparison

	Conclusions and outlook
	Acknowledgements
	References

