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Abstract. This work is part of the Metaheuristic Network, a European
Commission project that seeks to empirically compare the performance of
various metaheuristics on different combinatorial optimization problems.
In this paper we define a representation, a neighbourhood structure and
a local search for a university timetabling problem. Our motivation is to
provide a common search landscape for the metaheuristics that we aim
to compare, allowing us to make a fair and meaningful analysis of the
relative performance of these methods on a timetabling problem.

1 The problem

The aim of the Metaheuristics Network? — a European Commission
project undertaken jointly by five European institutes — is to compare
and analyse the performance of various metaheuristics on different com-
binatorial optimization problems including timetabling.
The timetabling problem considered here is a reduction of a typical
university timetabling problem. A problem instance generator produces
problem instances with different characteristics for different values of
given parameters. The problem consists of a set of events E to be sched-
uled in 45 timeslots (5 days of 9 hours each), a set of rooms R in which
events can take place, a set of students S who attend the events, and a
set of features F satisfied by rooms and required by events. Each stu-
dent attends a number of events and each room has a size. A feasible
timetable is one in which all events have been assigned a timeslot and a
room so that the following hard constraints are satisfied:

– no student attends more than one event at the same time;
– the room is big enough for all the attending students and satisfies

all the features required by the event;
– only one event is in each room at any timeslot.

In addition, a candidate timetable is penalised equally for each occur-
rence of the following soft constraint violations:

– a student has a class in the last slot of the day;
– a student has more than two classes in a row;
– a student has a single class on a day.

? http://www.metaheuristics.net/



2 The solution representation

The solution representation chosen is a direct representation. A solution
consists of an ordered list of length |E| where the positions correspond
to the events (position i corresponds to event i for i = 1, ..., |E|). An
integer number between 1 and 45 (representing a timeslot) in position i
indicates the timeslot to which event i is assigned. For example the list

3 27 43 . . . 10

means that event 1 is assigned to timeslot 3, event 2 is assigned to times-
lot 27, and so on. The room assignments are not part of the explicit
representation; instead we use a matching algorithm to generate them.
For every timeslot there is a list of events taking place in it, and a list
of possible rooms to which these events can be assigned. The matching
algorithm gives a maximum cardinality matching between these two sets
using a deterministic network flow algorithm. If there are still unplaced
events left, it takes them in label order and puts each one into the room
of correct type and size which is occupied by the fewest events. If two or
more rooms are tied, it takes the one with the smallest label. In this way
each event-timeslot assignment corresponds uniquely to one timetable,
i.e. a complete assignment of timeslots and rooms to all the events.

3 The neighbourhood structure

The solution representation described above allows us to define a neigh-
bourhood using simple moves involving only timeslots and events. The
room assignment are taken care of by the matching algorithm. We con-
sidered three types of move on a timetable involving one, two and three
events respectively:

– a move of type 1 moves one event from a timeslot to a different one;
– a move of type 2 swaps two events in two different timeslots;
– a move of type 3 permutes three events in three distinct timeslots in

one of the two possible ways.

Each type of move defines a neighbourhood denoted N1, N2, N3, respec-
tively. The complete neighbourhood N is then defined as the union of
these three neighbourhoods: N = N1 ∪N2 ∪N3.

4 The local search

Since the neighbourhood is large we use a first improvement local search
which works as follows. Consider in order moves of type 1, 2 and 3 for
every event involved in constraint violations. Initially ignore soft con-
straint violations. Then, if the timetable reaches feasibility, consider soft



constraints as well, but never go back from a feasible to an infeasible so-
lution. For each potential move re-apply the matching algorithm to the
affected timeslots and delta-evaluate the result. The local search is ended
if no improvement is found after trying all possible moves on each event
of the timetable. A more detailed description of the algorithm follows:

1. Ev-count ← 0;
Generate a circular randomly-ordered list of the events;
Initialize a pointer to the left of the first event in the list;

2. Move the pointer to the next event;
Ev-count ← Ev-count + 1;
if ( Ev-count = |E| ) {

Ev-count ← 0;
goto 3.; }

(a) if ( current event NOT involved in hard constraint violation
(hcv) )
{ goto 2.; }

(b) if ( 6 ∃ an untried move for this event ) { goto 2.; }
(c) Calculate next move (first in N1, then N2 then N3)?? and gen-

erate resulting potential timetable;
(d) Apply the matching algorithm to the timeslots affected by the

move and delta-evaluate the result;
(e) if ( move reduces hcvs ) {

Make the move;
Ev-count ← 0;
goto to 2.;}

(f) else goto 2.(b);

3. if ( ∃ any hcv remaining ) END LOCAL SEARCH;

4. Move the pointer to the next event;
Ev-count ← Ev-count + 1;
if ( Ev-count = |E| ) END LOCAL SEARCH;

(a) if ( current event NOT involved in soft constraint violation (scv)
)
{ goto 4.; }

(b) if ( 6 ∃ an untried move for this event ) { goto 4.; }
(c) Calculate next move (first in N1, then N2 then N3)?? and gen-

erate resulting potential timetable;
(d) Apply the matching algorithm to the timeslots affected by the

move and delta-evaluate the result;
(e) if ( move reduces scvs without introducing a hcv ) {

Make the move;
Ev-count ← 0;
goto 4.; }

(f) else goto 4.(b);

?? That is, for the event being considered, potential moves are calculated in strict order.
First, we try to move the event to the next timeslot, then the next, then the next
etc. If this search through N1 fails then we move through the N2 neighbourhood, by
trying to swap the event with the next one in the list, then the next one, and so on.
The same then occurs for N3.



The described local search may be very wide and deep. Preliminary ob-
servations suggest that when used within the context of some metaheuris-
tic technique it may be more efficient to reduce the depth and width,
allowing the metaheuristic a greater proportion of CPU time. This can
be achieved in a number of ways, some of them stochastic, so that the
local search is parameterized. Parameters might include the following:
a restriction of the neighbourhood size by excluding N3; a time limit;
a probability associated with each move being performed; a probability
associated with each event being considered; and a maximum number of
steps. We will present results regarding which values of these parameters
are best for different contexts.
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