Mathware & Soft Computing 7 (2000)

Experiments with Variants of Ant Algorithms

Thomas Stiitzle and Sebastian Linke
Darmstadt University of Technology
Department of Computer Science
Intellectics Group
Alexanderstr. 10, 64283 Darmstadt (Germany)
e-mail: stuetzle@informatik.tu-darmstadt.de, mail@sebastian-linke.com

Abstract

A number of extensions of Ant System, the first ant colony optimization
(ACO) algorithm, were proposed in the literature. These extensions typically
achieve much improved computational results when compared to the original
Ant System. However, many design choices of Ant System are left untouched
including the fact that solutions are constructed, that real-numbers are used
to simulate pheromone trails, and that explicit pheromone evaporation is
used. In this article we experimentally investigate adaptations of ant algo-
rithms to the traveling salesman problem that use alternative choices for these
latter features: we consider using pheromones to modify solutions and differ-
ent schemes for manipulating pheromone trails based on integer pheromone
trails without recurring to pheromone evaporation.

1 Introduction

Ant algorithms are a class of algorithmic approaches, loosely inspired by mod-
els of real ant behavior, for the solution of optimization and distributed control
problems. Currently, the most successful of these approaches is ant colony opti-
mization (ACO), a particular class of ant algorithms that follows the rules of the
ACO metaheuristic. The ACO metaheuristic was proposed to provide a unifying
framework for many applications of ant algorithms [5, 4] to combinatorial optimiza-
tion problems. ACO algorithms have been successfully applied to several N'P-hard
combinatorial optimization problems [1, 4, 5, 6, 10, 13, 15, 16]; we refer to [9] for
a recent overview of ACO and its applications.

From a high-level perspective, ACO is a population-based algorithm, where
artificial pheromone trails are used to coordinate a population of simple agents,
called (artificial) ants. Characteristic features of ACO are that (i) the artificial
ants construct solutions to the problem under concern, (ii) the communication
among the ants is indirect via the artificial pheromone trails, (iii) pheromones
evaporate over time, and (iv) additional procedures may be applied by the ants to

2 T. Stiitzle and S. Linke

perform centralized actions that can not be carried out by single ants from their
local perspective.

The first ACO algorithm, called Ant System (AS) [3, 7, 8], was initially ap-
plied to the Traveling Salesman Problem (TSP). It gave encouraging results, yet
its performance was not competitive with state-of-the-art algorithms. Therefore,
one important focus of research on ACO has been the introduction of algorith-
mic improvements over AS to achieve much better performance. These improved
algorithms include elitist Ant System [3], Ant Colony System (ACS) [6], MAX-
MZIN-Ant-System (MMAS) [19, 20], the rank-based version of Ant System [1],
and Best-Worst Ant System [2]. Typically, these algorithms have been tested again
on the TSP [17] and have shown significantly better performance that AS in several
applications.

Only few other successful ant algorithms were proposed for tackling A"P-hard
optimization problems that do not follow the rules of the ACO metaheuristic. These
exceptions include Hybrid Ant System (HAS) proposed by Gambardella, Taillard,
and Dorigo [11] and Fast Ant System (FANT) by Taillard and Gambardella [22],
which were both applied to the Quadratic Assignment Problem. Both, HAS and
FANT are not ACO algorithms because they differ in at least one rule from those
of the ACO metaheuristic.

HAS uses pheromone trails to guide a solution modification process but not
to construct solutions. So far, HAS was applied only to the quadratic assignment
problem [11] and it is not obvious, whether the use of pheromone trails in guiding
direct solution modifications has any advantage over the use of pheromone trails
in a solution construction process as in ACO algorithms. FANT differs mainly in
the pheromone management process and the avoidance of an explicit pheromone
evaporation from ACO: FANT uses a pheromone management mechanism that is
based on integer numbers to represent pheromone trails and occasionally applies
a re-initialization of the pheromone trails instead of pheromone evaporation to
diversify the search. One side effect of FANT is that computationally simpler
operations like additions instead of multiplications are used in the algorithm.

In this article, we experimentally investigate the influence on the performance
of the rules in which HAS and FANT differ from typical ACO algorithms using the
TSP as an example application. To investigate the influence of using pheromone
trails for solution modifications, we adapt an available implementation of MMAS,
one of the currently best performing ACO algorithms [19, 18, 20]. In a second
set of experiments we implemented FANT for the TSP. Finally, we combine the
modifications introduced by HAS and FANT into a new ant algorithm that appears
to be competitive with the currently best performing ACO algorithms when applied
to the TSP.

The article is structured as follows. Section 2 introduces ACO, the TSP and one
of the currently best performing ACO algorithm for TSPs, MMAS. In Section 3
we introduce HAS and FANT and we present computational results in Section 4.
We end with some concluding remarks in Section 5.

Experiments with Variants of Ant Algorithms 3

procedure Ant Colony Optimization
Init pheromones, calculate heuristic
while(termination condition not met) do
p = ConstructSolutions(pheromones, heuristic)
p = LocalSearch(p) % optional
GlobalUpdateTrails(p)
end
end Ant Colony Optimization

Figure 1: Algorithmic skeleton of ant colony optimization algorithms
for static combinatorial optimization problems.

2 Ant colony optimization

2.1 ACO algorithms

Ant Colony Optimization (ACO) [5, 4] is a population-based approach that was
inspired by the behavior of real ant colonies, in particular, by their foraging behav-
ior. One of the main ideas underlying this approach is the indirect communication
among the individuals of a colony of agents, called (artificial) ants, based on an
analogy with pheromone trails that real ants use for communication (pheromones
are an odorous, chemical substance). The (artificial) pheromone trails are a kind
of distributed numeric information that is modified by the ants to reflect their
accumulated experience while solving a particular problem.

In fact, ants in ACO implement stochastic construction procedures that are
biased by pheromone trails and heuristic information (for example, distances be-
tween cities in the TSP case) on the problem being solved. The solutions obtained
by the ants may then be improved by applying some local search procedure. When
applied to the TSP and other N"P-hard static combinatorial problems (Static com-
binatorial problems are those in which all relevant problem data are available before
the start of the algorithm. This is in contrast to dynamic problems, where problem
data may change during the solution process.), ACO algorithms follow the high-
level procedure given in Figure 1. After the initialization of the pheromone trails
and some parameters, a main loop is repeated until some termination condition,
like a maximum limit on the number of solution constructions or the maximum
CPU-time is met: First, the ants construct solutions; in a following, optional phase
the generated solutions may be improved by a local search, and finally the phero-
mone trails are updated. It should be noted that the ACO metaheuristic [5, 4] is
more general than the algorithmic scheme given here. For example, the algorithmic
scheme of Figure 1 does not capture the application of ACO algorithms to network
routing problems, which is an inherently dynamic problem.

4 T. Stiitzle and S. Linke

2.2 The traveling salesman problem

The traveling salesman problem (TSP) plays an important role in Ant Colony
Optimization for many reasons: (i) it is a problem to which ACO algorithms are
easily applied, (i) it is an A"P-hard optimization problem, (i) it is a standard
test-bed for new algorithmic ideas and a good performance on the TSP is often
taken as a proof of their usefulness, and (iv) it is easily understandable, so that
the algorithm behavior is not obscured by too many technicalities.

The TSP can be represented by a complete, weighted directed graph G =
(V,A,d) with V being the set of nodes (the cities), A being the set of arcs,
and d : A — IN being a weight function associating a positive, integer weight
d(i,) to every arc (i,J), which corresponds to the distance between cities i and
j. The goal is to find a shortest closed path that visits every city exactly once,
that is, a Hamiltonian cycle (often called tour in the TSP context). For sym-
metric TSPs, the distance between every pair of cities is independent of the di-
rection of traversing the cities, that is, d(i,j) = d(j,4) for every pair of nodes.
All TSP instances used in the empirical studies presented in this article are sym-
metric and are taken from the TSPLIB benchmark library which is accessible at
http://www.iwr.uni-heidelberg.de/iwr/ comopt/soft/TSPLIB95. These in-
stances have been used in many experimental studies on the TSP and, in part,
stem from practical applications of the TSP.

2.3 MAX-MIN-Ant-System

MAX-MIN-Ant-System (MMAS) [21, 19, 20] is one of the currently best per-
forming ACO algorithms. MMAS is a direct successor of Ant System (AS), the
first ACO algorithm; it differs from AS mainly in the pheromone update, the use
of local search algorithms to improve the solutions constructed by the ants, and
the use of explicit limits on the range of feasible values of the pheromones.

MMAS constructs solutions in exactly the same way as AS: Initially, each ant
is put on some randomly chosen city. At each construction step, ant k applies a
probabilistic action choice rule: when being at city i, ant k£ chooses to go to a yet
unvisited city j at the tth construction step with a probability of

P 7100 el 7] o Ak

Pi; () ZzENik [Ta ()] - [na]? e N, M
where n;; = 1/d;; is an a priori available heuristic value, o and § are two parameters
which determine the relative influence of the pheromone trail and the heuristic
information, and N} is the feasible neighborhood of ant k, that is, the set of cities

which ant k has not yet visited; if j ¢ NV}, we have pf;(t) = 0.
After all ants have constructed a solution, the pheromone trails are updated

according to

i (t + 1) = (1= p) - 73 (t) + Arhest (2)

where Arbest = 1/Lbest if arc (i, j) € T%5t and zero otherwise. Tt is either the
iteration-best solution T'%, or the best-so-far solution T/ and L%t is the corre-

Experiments with Variants of Ant Algorithms 5

sponding tour length. Experimental results have shown that the best performance
is obtained by gradually increasing the frequency of choosing T/ for the trail
update [16, 20].

In MMAS lower and upper limits on the possible pheromone strengths 7,
and Tmgqg On any arc are imposed to avoid search stagnation. Hence, for all arcs (7, 5)
we have 7;; € [Tmin, Tmaz)- Experimental results [16, 20] suggest that the lower trail
limits used in MMAS are the more important ones, since the maximum possible
trail strength on arcs is limited in the long run due to pheromone evaporation.
The pheromone trails in MMAS are initialized to their upper pheromone trail
limits. Doing so together with low value for the pheromone evaporation p leads to
an increased exploration of tours at the start of the algorithms because the relative
differences between the pheromone trail strengths are less pronounced. We refer to
[16, 20] for a detailed experimental analysis of MAX-MZN-Ant-System.

3 Hybrid Ant System and Fast Ant System

In this section we describe the two ant algorithms that inspired us to reconsider
specific design choices of Ant System, Hybrid Ant System (HAS) [11] and Fast
Ant System (FANT) [22]. The features of these two algorithms we consider are (i)
the exploitation of pheromone trails for solution modification instead of solution
construction (taken from HAS) and (ii) a different pheromone management scheme
(taken from FANT). While both algorithms were initially applied to the quadratic
assignment problem, here their description is geared towards the TSP.

3.1 Solution modification

In HAS, the pheromone trail based modification of an ant’s current solution is
applied by each ant k. It consists in repeating R times a random exchange move,
for example, in the TSP case a two-exchange move. First, an index r is randomly
chosen from 1,...,n. Then, a second index s # r,|s — r| > 1 is chosen and a 2-
exchange move involving the cities at the indices r,r + 1, s, and s+ 1 is performed.
The second index s is chosen in the following way. With probability 1 — ¢, where ¢
is a parameter, it is chosen to maximize the value of Ty +7(;4.1)(s+1) (exploitation),
with a probability of ¢ the second index s is randomly chosen with a probability of

Tor + T(r+1)(s+1) (3)
> it (Tsi + Tr1yi41))

After a solution has been modified, local search is applied to the so generated
solution. In HAS additional features of search intensification and diversification
are added, we refer to [11] for a description of the techniques used.

HAS is similar in spirit to iterated local search algorithms [14] in which a local
search algorithm is repeatedly applied to perturbations of the current solution.
When applied to the TSP, ILS algorithms use a particular 4-exchange move that
was shown to be particularly successful. In this solution perturbation a current
tour is cut at four randomly chosen edges into four sub-tours s; — so — s3 — 54

6 T. Stiitzle and S. Linke

first exchange movi

eeeee

fffff

second exchange mov

+++++

v

v

v

fffff O RO OO OO0

Figure 2: Solution modification for TSPs as used by HAS.

contained in the solution in the given order. These sub-tours are then reconnected
in the order s4 — s3 — s3 — 51 to yield a new starting solution for the local search.
Note that (i) this corresponds to a 4-exchange move that cannot be undone by two
independent 2-exchange moves and that (ii) in ILS algorithms typically random
perturbations are applied. Because of the similarity of the solution modification in
HAS to this 4-exchange move, in the following we will always apply two of the above
described 2-exchange moves simultaneously, which allows for easier comparisons of
the effect of the solution modification to this perturbation. The use of pheromones
in the perturbation process introduces a bias into the perturbation process and
allows to guide the perturbation towards better solutions.

3.2 FANT-type pheromone manipulation

In FANT, solutions are constructed using the action choice rule given in Equation
1, yet without using heuristic information. FANT differs from the other approaches
presented so far in two main aspects. The first aspect is that the algorithm makes
use of only one single ant, i.e., no population is used. The use of only one single
ant allows the algorithm to find good solutions fast. However, using only one
single ant appears to be merely a specific parameter setting and not an essential
feature of the algorithm: Experiments with FANT showed that on the long run

Experiments with Variants of Ant Algorithms 7

significantly better solution quality is obtained when using a colony size larger than
one. Therefore, in the experiments indicated below, we use a population of ants
as it is typically done in ACO algorithms. The second aspect, which is the main
focus of this research, concerns the management of the pheromone trail matrices.
One first difference of the pheromone management in FANT to ACO algorithms is
that FANT uses only integer values for the pheromone trails. A second difference
is that FANT does not use pheromone evaporation after each iteration, but that
it rather uses occasional re-initialization of the pheromone trails to avoid search
stagnation.

Pheromone trails in FANT are modified as follows: Initially, all pheromone trails
are set to one. After each iteration pheromone is added to the current pheromone
trail matrix. For the pheromone trail update two parameters, £ and £*, are used.
& represents the amount of pheromone added to each arc of the iteration-best
solution and &* is the amount of pheromone added to each arc of the best-so-far
solution T, ¢* is assigned a fixed value, the value of ¢ is modified during the
algorithm’s run. In two occasions the pheromone matrix is updated different from
the above described rule: (7) if the best-so-far solution has been improved, £ and all
the pheromone trails are reinitialized to one, resulting in an intensification of the
search around the best-so-far solution; (i7) if the constructed solution corresponds
to T'%/ ¢ is increased by one and all pheromone trails are reinitialized to &, resulting
in a diversification of the search.

4 Experimental results

We have tested the algorithms on a set of symmetric TSP instances from TSPLIB.
The experiments were run on a 500 MHz Celeron processor with 256 MB of RAM,
the maximally allowed computation time was 600 seconds for instances with less
than 500 cities (the results are based on 25 independent trials in this case), and 1200
seconds for the others (10 independent trials). In the following all implementations
use either for the solution construction or the solution modification nearest neighbor
lists of length 20. All solutions are improved by a first-improvement 3-opt local
search algorithm that uses nearest neighbor lists of length 40, a fixed radius nearest
neighbor search, and don’t look bits. We refer to [12] for details on these speed-up
techniques.

4.1 MAX-MIN-Ant-System

For a baseline comparison for the ant algorithms under investigation to state-of-
the-art ACO algorithms, we give computational results obtained with MMAS in
Table 1. The results are based on a re-implementation of the MMAS algorithm
described in [20] using the same parameter settings: We use m = 25 ants, a = 1,
B=2 p=02 Tma = 1/(p- L*), Tppin = Tmaz/2n. The frequency fb of using
T/ in the pheromone trail update (f bsf indicates that every £/ iterations 7%/ is
allowed to deposit pheromone) is set as follows (if T/ is not used, pheromone is
added to the arcs of T%): In the first 25 iterations only T% is used to update the

8 T. Stiitzle and S. Linke

Table 1: Computational results with MMAS. Given are for each instance the known
optimal solution, the best solution found by MMAS, the average solution quality found
(avg.) and the average time to find the best solution in each trial.

instance opt best avg. avg.time
1in318 42029 42029 42029 16
pcb442 50778 50778 50781 142
rat783 8806 8806 8806 433
pcb1173 56892 56892 56897 416
d1291 50801 50801 50809 571

trails; we set £ to 5 for 25 < t < 75 (where ¢ is the iteration counter), to 3 for
75 < t <125, to 2 for 125 < ¢t < 250, and to 1 for ¢t > 250. While MMAS solves
the three smallest instances in short computation time in almost every test run
(instances 1in318 and rat783 are solved to optimality in every single test run),
on the two largest instances not every test run could identify the known optimal
solutions.

4.2 Solution modification

An algorithmic outline of the HAS-algorithm is given in Figure 3. After initializing
the ants with random initial tours, the algorithms iterates through a main loop,
where, starting from ant, first this tour is modified to yield ant’. Next, ant’ is
improved by a local search algorithm, resulting in a locally optimal tour ant".
Finally, the tour that is kept in the population is the solution ant”, if ant” is
shorter than ant, otherwise ant is kept in the population. Each single modification
consists actually of two independently chosen 2-exchange moves; the effect is that
each single modification cuts and re-introduces exactly 4 arcs. Since one single
modification may not be enough, we varied the number of modifications for each
ant systematically between 1 and 10 in steps of 1. Regarding the pheromone trail
manipulation, the same procedure as followed by MMAS is used including the
pheromone trail limits and the corresponding parameter settings, and the value of
q is set to one (this gave best results according to some preliminary experiments).
Because of the pheromone update procedure being taken from MMAS, we call
the resulting HAS algorithm in the following MMAS-HAS.

Computational results with this first variant are given on the left side of Table 2.
Compared to MMAS, the performance of this variant is poor. But why is this the
case? In fact, ILS algorithms based on only one single random solution perturbation
by a particular 4-exchange move are among the best performing algorithms for the
TSP. We conjectured that the poor performance of solution modifications in ant
algorithms may be due to the type of modification introduced. We differentiate
between three types of modifications.

Type 1: one 2-exchange move is fully within one other 2-exchange move.

Experiments with Variants of Ant Algorithms 9

procedure HAS for TSP
Init pheromones
foreach ant do
ant = RandomTour
while (termination condition not met) do
foreach ant do
ant’ = Modification(ant, pheromones)

ant” = LocalSearch(ant')
ant = Acceptance(ant,ant’’)
end

GlobalUpdatePheromoneTrails
if (converged)
Reinitialize pheromones
end
end
end HAS for TSP

Figure 3: Algorithmic skeleton for HAS.

Table 2: Left side: Computational results for MMAS-HAS; any modifications are
allowed. (See Table 1 for a description of the entries.) Right side: Distribution of the
frequencies of the three modification types in the basic version of MMAS-HAS. (see text
for details).

instance opt best avg. avg.time typel type2 type3
1in318 42029 42029 42100 53 6.8% 0.4% 92.8%
pcb442 50778 50778 50899 137 12.6% 1.0% 86.4%
rat783 8806 8840 8858 793 8.8% 0.6% 90.6%
pcb1173 56892 57363 57510 991 6.4% 0.4% 93.2%
d1291 50801 50885 51019 706 3.7% 01% 96.2%

Type 2: the two 2-exchange moves overlap.

Type 3: the two 2-exchange moves are completely independent of each other

Figure 4 gives a graphical illustration of these three types of modifications. An
unfortunate case is certainly a type 3 modification, because it can directly be un-
done in the local search. This is also, depending on the neighborhood examination
scheme, true for the type 1 modification; the only case where undoing modification
seems more difficult is the type 2 modification.

The right side of Table 2 gives the frequencies of the single modifications for a
run of our algorithm. In fact, the rather useless type 3 modification occurs most
frequently, for all instances in more than 86% of the cases! Based on this observa-
tion we implemented further variants, where the type of solution modification was
restricted. The left side of Table 3 gives the computational results if the modifica-
tion is restricted to type 1 or type 2; the frequencies of the occurrence of the single

10 T. Stiitzle and S. Linke

type 1: One 2-exchange move is fully within one other 2-exchange move

(2nd exchange movj
\— 1st exchange move

type 2: The two 2-exchange moves overlap

\—lst exchange move—‘

type 3: The 2-exchange moves are completely independent of each other

(2nd exchange movT
tlst exchange movJ

Figure 4: The three types of solution modifications occurring in the HAS application to
the TSP.

modification types are given on the right side of Table 3. Although the computa-
tional results improved considerably over the first version, we tested a third one
with only type 2 modifications; the results are given in Table 4 on the left side. In
fact, this variant obtains the best computational results, but still the performance
is significantly worse than for MMAS.

A disadvantage of using type 2 modifications only is that finding such a mod-
ification is not a trivial task and rather time intensive. To avoid searching for
applicable type 2 moves, we may relax the condition that the two exchange moves
that compose one single modification move have to be found using the pheromone
trails. We do so by considering a modification, where the second 2-exchange move
is chosen randomly without using pheromone trails but in such a way that the two
2-exchange moves overlap (type 2a modification). Computational results with this
variant are given in Table 4 on the right side. Surprisingly a strong improvement in
performance could be obtained. Certainly, due to the faster modification process
more solutions can be generated, but this advantage is rather small and does not
explain the large improvement of the computational results. Hence, the only reason
for this fact may be the increased randomness of the solution modifications.

To test this conjecture, in a final experiment we run MMAS-HAS in a version
where all pheromone trails are the same, that is, the solution modification is done

Experiments with Variants of Ant Algorithms 11

Table 3: Left side: Computational results for MMAS-HAS; only type 1 and 2 modifica-
tions are allowed. (See Table 1 for a description of the entries.) Right side: Distribution
of the frequencies of the two modification types in this restricted version of MMAS-HAS.

instance opt best avg. avg.time typel type 2
1in318 42029 42029 42066 52 93.9% 6.1%
pcb442 50778 50778 50849 121 91.7% 8.3%
rat783 8806 8820 8836 744 93.1% 6.9%
pcb1173 56892 57175 57351 991 94.3% 5.7%
d1291 50801 50909 50955 697 97.5% 2.5%

Table 4: Left side: Computational results for MMAS-HAS; only type 2 modifications are
allowed. Right side: Computational results for MMAS-HAS if only type 2a modifications
are allowed (second 2-exchange move does not consider pheromone trails). (See Table 1
for a description of the entries.)

instance opt best avg. avg.time best avg. avg.time
1in318 42029 42029 42032 55 42029 42029 19
pcb442 50778 50778 50792 175 50778 50792 68
rat783 8806 8807 8820 694 8806 8807 508
pcb1173 56892 57150 57289 894 56892 56910 746
d1291 50801 50843 50885 392 50801 50826 619

in a completely random way according to uniform distributions. In fact, such
an algorithm corresponds to the parallel execution of m ILS runs with random
modifications as applied in MMAS-HAS.

The results with this algorithm in Table 5 are discouraging regarding the guid-
ance of the modifications by pheromones: The algorithm with random modifica-
tions showed even slightly better performance! One interpretation of this results is
that the solution modification is biased too strongly by the pheromone trails and
that it should be somewhat more random. In fact, a mix of pheromone trails based
solution modification and random modifications may be a good compromise.

Table 5: Computational results for MMAS-HAS algorithm with random modifications
instead of modifications guided by pheromone trails, which, in fact, corresponds to parallel
independent ILS runs. (See Table 1 for a description of the entries.)

instance opt best avg. avg.time
1in318 42029 42029 42029 33
pcb442 50778 50778 50779 120
rat783 8806 8806 8807 681
pcb1173 56892 56893 56900 784
d1291 50801 50801 50814 529

12 T. Stiitzle and S. Linke

Table 6: Left side: FANT algorithm with parameter settings £ = 1,£* = 4. Right side:
FANT algorithm with parameter settings £ = 1,£* = 4 and additional restart after 200
iterations without improvement.(See Table 1 for a description of the entries.)

instance opt best avg. avg.time best avg. avg.time
1in318 42029 42029 42029 15 42029 42034 23
pcbé442 50778 50798 50876 88 50778 50805 42
rat783 8806 8819 8851 145 8806 8812 619
pcb1173 56892 57312 57410 425 57018 57068 1107
d1291 50801 50820 50895 337 50803 50849 859

4.3 FANT-type pheromone manipulation

When applying FANT, we run experiments with the parameter settings originally
proposed for FANT with the only exception that we use a population of 25 ants.
The results with that scheme are given in Table 6 on the left side. As already
the case in the first implementation of MMAS-HAS, the computational results are
rather deceptive, especially for the larger TSP instances. A closer examination of
the algorithm showed that this effect is on the one side due to a quick convergence
of the algorithm to suboptimal solutions when £ is low compared to £*. On the
other side, if £ is too large compared to £* (we tested a setting of £ = 1 and £* = 2),
we found that the algorithm cannot focus to promising search space regions and
fails to identify very good solutions (the results are not shown here). To avoid
early convergence when ¢ is low compared to £*, we added a restart mechanism to
FANT and, in fact, improved results were identified as can be seen in Table 6 on
the right side. Nevertheless, the computational results obtained with FANT were
still significantly worse than those of MMAS.

4.4 Combining HAS and FANT ideas

In one final experiment we combined the idea of modifying solutions guided by
pheromone trails with the FANT-type pheromone manipulation. This may be a
good idea, because apparently in MMAS-HAS the guidance given by the pheromone
trails was too strong, while in FANT alone it appears to be too weak to efficiently
solve the TSP. In fact, the computational results in Table 7 confirm this conjecture:
the computational results with this combination are much better than either with
MMAS-HAS or with FANT, and also slightly better than with the MMAS-HAS-
variant using random solution modifications (see Tables 4 on the right side and 5)
and in the same range as the computational result obtained with MMAS.

5 Conclusions

In this article we have re-considered design choices for the implementation of ant
algorithms. In particular, we (i) used pheromones to guide solution modifications
and (ii) applied a procedure for the pheromone management inspired by the FANT
algorithm.

Experiments with Variants of Ant Algorithms 13

Table 7: Computational results for HAS-variant with FANT-type pheromone update,
parameters £ =1, = 2.

instance opt best avg. avg.time
1in318 42029 42029 42029 18
pcb442 50778 50778 50778 68
rat783 8806 8806 8806 468
pcb1173 56892 56892 56897 909
d1291 50801 50801 50816 541

Initially, we expected that the idea of using solution modifications based on phe-
romone trails may achieve very high performance, because ILS algorithms, which
often use pure random solution modifications, are currently among the best avail-
able algorithms for the TSP. However, the initial results were rather disappointing;
at least we could identify some reasons for the poor performance: without restric-
tions on the type of modifications, very often such modifications are introduced
that can be undone directly by a local search and the guidance of the solution
modifications by the pheromone trails seems to lead to early stagnation behavior
of the search. In fact, with increased “randomness” of the solution modification
and less guidance by pheromone trails the computational results improved.

Regarding the pheromone management scheme applied in FANT, it seemed that
the algorithm was, on one side, stuck too fast in sup-optimal solutions; but once
the diversification level obtained by modifying the parameter settings is high, the
algorithm looses the ability to focus on a specific search space region with high
quality solutions.

Finally, by combining the two ideas of solution modifications and FANT-like
pheromone management, we could obtain a new ant algorithm that was able to
match the performance of current state-of-the-art ACO algorithms.

From the ACO perspective, the different design choices we investigated and
the, in part, rather poor computational results indicate that it seems to be rather
difficult to further improve significantly the performance of state-of-the-art ACO
algorithms. The results also show that by modifying some details of ACO algo-
rithms and introducing new techniques not necessarily improvements over already
existing algorithms are obtained. Therefore, it has to be carefully studied, whether
newly introduced techniques are really necessary and helpful. In fact, we may
see the existing ACO algorithms as particular instantiations of the available com-
ponents in a ”design space”, which contains the set of possible ACO algorithm
instantiations. If we take this point of view, we can conclude that the performance
of the best available ACO algorithms may be improved somewhat, but it seems
that they correspond to a high quality local optimum in this design space.

Acknowledgments

This work was partially supported by the “Metaheuristics Network”, a Research Training
Network funded by the Improving Human Potential programme of the CEC, grant HPRN-

14

T. Stiitzle and S. Linke

CT-1999-00106. The information provided is the sole responsibility of the authors and
does not reflect the Community’s opinion. The Community is not responsible for any use
that might be made of data appearing in this publication.

References

[1]

[2]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

B. Bullnheimer, R. F. Hartl, and C. Strauss. A new rank-based version of the Ant
System: A computational study. Central European Journal for Operations Research
and Economics, 7(1):25-38, 1999.

O. Cordon, I. Ferndndez de Viana, F. Herrera, and L. Moreno. A new ACO model
integrating evolutionary computation concepts: The best-worst Ant System. In
M. Dorigo, M. Middendorff, and T. Stiitzle, editors, Proceedings of Ants’2000, pages
22-29, Brussels, Belgium, 2000.

M. Dorigo. Optimization, Learning and Natural Algorithms (in Italian). PhD thesis,
Dipartimento di Elettronica, Politecnico di Milano, Italy, 1992. pp. 140.

M. Dorigo and G. Di Caro. The Ant Colony Optimization meta-heuristic. In
D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimization, pages
11-32. McGraw Hill, London, UK, 1999.

M. Dorigo, G. Di Caro, and L. M. Gambardella. Ant algorithms for discrete opti-
mization. Artificial Life, 5(2):137-172, 1999.

M. Dorigo and L. M. Gambardella. Ant Colony System: A cooperative learning
approach to the traveling salesman problem. IEEE Transactions on Evolutionary
Computation, 1(1):53-66, 1997.

M. Dorigo, V. Maniezzo, and A. Colorni. Positive feedback as a search strategy.
Technical Report 91-016, Dipartimento di Elettronica, Politecnico di Milano, Italy,
1991.

M. Dorigo, V. Maniezzo, and A. Colorni. The Ant System: Optimization by a colony
of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics — Part
B, 26(1):29-41, 1996.

M. Dorigo and T. Stiitzle. The ant colony optimization metaheuristic: Algorithms,
applications and advances. In Metaheuristics Handbook. Kluwer Academic Publish-
ers, 2002. In press.

L. M. Gambardella and M. Dorigo. Ant Colony System hybridized with a new
local search for the sequential ordering problem. INFORMS Journal on Computing,
12(3):237-255, 2000.

L. M. Gambardella, E. D. Taillard, and M. Dorigo. Ant colonies for the quadratic
assignment problem. Journal of the Operational Research Society, 50(2):167-176,
1999.

D. S. Johnson and L. A. McGeoch. The travelling salesman problem: A case study
in local optimization. In E. H. L. Aarts and J. K. Lenstra, editors, Local Search in
Combinatorial Optimization, pages 215-310. John Wiley & Sons, Chichester, 1997.

V. Maniezzo. Exact and approximate nondeterministic tree-search procedures for
the quadratic assignment problem. INFORMS Journal on Computing, 11(4):358—
369, 1999.

Experiments with Variants of Ant Algorithms 15

[14]

[15]

[16]

[17]

(18]

[19]

[20]

21]

[22]

O. Martin, S. W. Otto, and E. W. Felten. Large-step markov chains for the traveling
salesman problem. Complex Systems, 5(3):299-326, 1991.

R. Michel and M. Middendorf. An ACO algorithm for the shortest supersequence
problem. In D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimization,
pages 51-61. McGraw Hill, London, UK, 1999.

T. Stiitzle. Local Search Algorithms for Combinatorial Problems: Analysis, Improve-
ments, and New Applications. Infix, Sankt Augustin, Germany, 1999.

T. Stiitzle and M. Dorigo. ACO algorithms for the traveling salesman problem. In
K. Miettinen, M. M. Mékeld, P. Neittaanmiki, and J. Périaux, editors, Evolutionary
Algorithms in Engineering and Computer Science, pages 163-183. John Wiley &
Sons, Chichester, UK, 1999.

T. Stiitzle and H. Hoos. The MAX-MZN ant system and local search for combina-
torial optimization problems. In S. Vof}, S. Martello, I. H. Osman, and C. Roucairol,
editors, Metaheuristcs — Advances and Trends in Local Search Paradigms for Opti-
mization, pages 313-329, Dordrecht, 1999. Kluwer Academic Publishers.

T. Stiitzle and H. H. Hoos. The MAX-MZN Ant System and local search for
the traveling salesman problem. In T. Back, Z. Michalewicz, and X. Yao, editors,
Proceedings of the 1997 IEEE International Conference on Evolutionary Computation
(ICEC’97), pages 309-314. IEEE Press, Piscataway, NJ, 1997.

T. Stiitzle and H. H. Hoos. MAX-MZN Ant System. Future Generation Computer
Systems, 16(8):889-914, 2000.

T. Stiitzle and H.H. Hoos. Improving the Ant-System: A detailed report on the
MAX-MIN Ant System. Technical Report AIDA-96-12, FG Intellektik, TU
Darmstadt, Germany, August 1996.

E. D. Taillard and L. M. Gambardella. Adaptive memories for the quadratic assign-
ment problem. Technical Report IDSIA-87-97, IDSTA, Lugano, Switzerland, 1997.

