
A review of the literature on local search
algorithms for MAX-SAT

Thomas Stützle, Holger Hoos
Intellectics Group, Darmstadt University of Technology

Andrea Roli
DEIS, Università degli Studi di Bologna

1 Introduction

The satisfiability problem in propositional logic (SAT) is the task to decide for a given propo-
sitional formula whether it has a model. This problem plays a prominent role in various ar-
eas of computer science, mathematical logic and artificial intelligence, but also in applications
such as asynchronous circuit synthesis [29], inductive inference [41], integrity of databases [3],
hardware verification and many others. SAT was also the first problem to be proven

���
-

complete [11] and as such is amongst the central problems in theoretical computer science.

Every satisfiability problem can be expressed in a standard form, called a conjunctive normal
form (CNF), that is, as a conjunction of clauses, each clause being a disjunction of literals and
each literal being a variable or its negation.

More formally, let �����	��
��������������������� be the set of � clauses that involve � Boolean
variables ��
���������������� �"! that can take the value 0 and 1 (or true and false). Each clause �$# is a
disjunction of �%# literals, that is

��#&�
!�'(
)�*

+ #) (1)

where each literal is either a variable �) (that is, a positive literal) or its negation ,-�) (that
is, a negative literal). Without loss of generality we assume that at most one of �) and ,-�) is
included in each clause. A clause is satisfied, that is, it evaluates to 1 (true), if at least one of the
positive literals in the clause is assigned the value 1 (true) or a negative literal is assigned the
value 0 (false). The SAT problem then is to decide whether an assignment of values to variables
exist such that all clauses are simultaneously satisfied, that is, whether the propositional formula

. �
�/
*

!�'(
)�*

+ #) (2)

1

is satisfiable. In fact, instead of just deciding whether such an assignment exists, one rather
wants to find such an assignment, in case it exists: this is the model-finding variant of SAT, a
well known

� �
-hard problem.

MAX-SAT is the optimization variant of SAT. Given a set of clauses, MAX-SAT is the prob-
lem to find a variable assignment that maximizes the number of satisfied clauses. In weighted
MAX-SAT additionally a weight � # is assigned to each clause � # and the goal becomes to max-
imize the weight of the satisfied clauses. (Alternatively, the objective function could be defined
as to minimize the weight of the unsatisfied clauses.) More formally, let � # be the weight of
clause ��# . Then the objective function is defined as

��� ��� �
��
*

� #	��
 � ��#��� (3)

where
 � ��#�� is one, if and only if the clause ��# is satisfied and otherwise zero. In case the
weights are not specified, that is, the instance is unweighted, we set � # �� ����� �� ��������� � . In
case of possible confusions we will call this latter variant unweighted MAX-SAT; when we refer
to MAX-SAT in general, we refer to the general form of the problem including clause weights.

Regarding local search approaches for SAT and MAX-SAT we discuss from Section 3 on, a
first remark is that both problems are typically treated identically: when trying to find models to
SAT formulae, one actually treats these formulae as MAX-SAT instances and tries to find a vari-
able assignment satisfying all clauses. If such an assignment is found, a model of the formula
is obtained. This close relationship between the local search approaches for the two problems
is also the reason, why we treat them together, here. Nevertheless, there are some particular
differences in the hardness of some special cases of SAT and MAX-SAT. For example, it is
well known that 2-SAT, the SAT problem restricted to clauses of length two, is a polynomially
solvable special case of SAT. Nevertheless, the MAX-2-SAT problem is known to be

� �
-hard.

In this article we give an overview of local search approaches for solving MAX-SAT. Al-
though at some occasions we also will refer to algorithms originally intended to solve the SAT
problem, we will not give a detailed overview of these algorithms and rather refer to the article
by Hoos and Stützle [37] for a detailed comparison of state-of-the-art stochastic local search
algorithms for SAT and to the extensive overview article by Gu, Purdom, Franco, and Wah [28]
for a general overview of SAT algorithms.

The remainer of this article is structured as follows. First, we give an overview of currently
available benchmark instances for MAX-SAT in Section 2. Then we give details on two basic
local search architectures for SAT and MAX-SAT problems, the so called GSAT and WSAT
architectures in Section 3, and extensions thereof, followed by a concise description of oblivi-
ous local search and large neighborhoods for solving MAX-SAT. Next, in Section 4 we present
the currently available metaheuristic approaches to MAX-SAT and finally we give in Section 5
some pointers to exact algorithms and other approximation algorithms. We conclude in Sec-
tion 6.

2

2 Benchmark instances

There are only few MAX-SAT instances publically available.
 One of the most wide-spread
benchmark sets is one of small, weighted MAX-SAT instances proposed by Resende, Pitsoulis,
and Pardalos [53]. These instances are derived from SAT instances submitted by Hooker to
the DIMACS Challenge on Graphs, Coloring and Satisfiability which are known to be easily
solvable. The instances have 100 variables and between 800 and 900 clauses. The clauses are
generated according to the constant probability model, in which each variable is included into a
clause with a probability � and then negated with a probability of 0.5. Resende at al. converted
these instances to weighted MAX-SAT instances by adding to each clause an integer weight
that is uniformly distributed in the interval � � �������� . Despite their small size, these instances
are used as the only benchmark set for a number of algorithms [46, 53, 49, 60, 66]. Nevertheless,
one should be so honest to say that these instances do not pose anymore a reasonable challenge
to state-of-the-art algorithms for MAX-SAT.

Other MAX-SAT instances, which were used in several researches, comprise mainly un-
weighted, uniform � -SAT instances, where each clause contains exactly � variables. Often, re-
searchers considered 3-SAT instances in this case, although it is known that also MAX-2-SAT
is

���
-hard. These instances typically are generated according to the fixed clause length model

[47]: Given are the number of variables � and the number of clauses
+
; each clause is produced

by choosing � variables at random according to a uniform distribution (that is, each variable is
chosen independently of the others with a probability of
	 �) and then negating each of these
variables with probability � ��� . In the clause generation process, tautological clauses (that is,
clauses containing a literal and its negation) and clauses with multiple occurrences of the same
literal are rejected; clauses are produced until

+
clauses (not considering rejected clauses) are

generated. Thus, for each value of � and
+
, a random distribution of Random- � -SAT formulae

is given; test sets generated as described above correspond to samples from these distributions.

It is well known that these random test sets underly a phase transition phenomenon. For
example, for Random-3-SAT there is a phase transition region at ca. 4.26 clauses per vari-
able [47, 43]. For higher ratios, Random-3-SAT instances are typically unsatisfiable (and there-
fore also interesting as MAX-SAT instances), while for lower ratios it is very easy to find
solutions which satisfy all clauses. Therefore, MAX-3-SAT instances are typically obtained at
high clause–variable ratios.

An example for such a set of instances is the one used by Battiti and Protasi [4]. This set con-
sists of 10 instances of each size, where the number of variables ranges from 100 to 1000 and
the clause–variable ratio ranges between 5 and 10. These benchmark instances are available for
download from the page http://rtm.science.unitn.it/intertools/sat/bench
mark.html.

Some more MAX-2-SAT and MAX-3-SAT instances were randomly generated by Borchers
et al. for a series of papers investigating the performance of exact algorithms either based on

We could consider all SAT instances to be MAX-SAT instances, but this interpretation was originally not

intended and therefore we do not discuss these instances here in detail. We rather refer to the SATLIB website
accessible at http://www.satlib.org, where most of these instances are available for download; at the
SATLIB side there always is included also a short description of these instances.

3

extensions of the Davis-Putnam-Loveland algorithm or based on Branch&Cut. However, the
instances they used were of rather small size, the largest having 150 variables and 750 clauses,
and therefore also are not a real challenge for efficient local search methods. These instances
are available at http://www.nmt.edu/˜borchers/maxsat.html.

In addition to these instances also all SAT instances from SATLIB can be used as bench-
marks for algorithms solving MAX-SAT, because in this case for solvable instances, that is for
instances for which a variable assignment can be found that satisfies all clauses, an optimal
solution for the MAX-SAT problem simply corresponds to a solution satisfying all clauses.

3 Local search architectures for SAT and MAX-SAT

In this section we present the GSAT and the WalkSAT families of algorithms, which are the two
main local search architectures underlying almost all local search algorithms for SAT (and also
MAX-SAT) and review some of the most widely used members of these families. Before going
into details of these architectures, we mention that the algorithms developed in the line of these
two architectures were originally intended only to solve SAT instances, but they directly can be
applied to MAX-SAT problems, too. For the presentation of the two local search architectures,
we will mainly use the jargon when attacking MAX-SAT instead of the more SAT oriented jar-
gon that typically is used when presenting these algorithms. The first of these architectures, the
GSAT architecture, was introduced in 1992 applying it to SAT. Nevertheless, there existed al-
ready at least one earlier local search approach, the Steepest Ascent–Mildest Descent approach
by Hansen and Jaumard [30], that uses a similar underlying local search engine but was applied
“only” to MAX-SAT.

3.1 Basics

In local search algorithms for MAX-SAT and SAT, the search space typically comprises the set
of all possible truth value assignments for the variables occurring in the given problem instance
and the solutions are the assignments corresponding to optimal solutions. The search space thus
defined is of exponential size in the number of propositional variables.

Most local search based MAX-SAT algorithms use a 1-flip neighborhood relation for which
two truth value assignments are neighbors if they differ in the truth value of exactly one variable.
Thus, the local search steps modify the truth value assigned to one propositional variable; such
a move is called a variable flip. Nevertheless, few extensions exist that consider flipping two or
three variables at a time; such a local search algorithm is introduced in Section 3.4.

Typically, local search algorithms for MAX-SAT use an objective function which is defined as
the sum of the weights of the clauses that are satisfied under the given variable assignment. � The
general idea for solving MAX-SAT by local search is to perform a random walk in the search
space which is biased such that the weight of the satisfied clauses is maximized (obviously, this

�

In the case a SAT instance is satisfiable, the global optima of the instance correspond to satisfying variable
assignments.

4

is equivalent to minimizing the weight of the unsatisfied clauses). The main difference between
different local search algorithms for SAT and MAX-SAT is in the step function, that is, in the
strategy used to select the variable to be flipped next.

Local search algorithms are typically incomplete. This is noticed by the fact that, in general,
they cannot guarantee to find an optimal solution for the instance attacked in finite time. In the
SAT case this actually means that for satisfiable problem instances they cannot be guaranteed to
find a solution. The reason for this is the non-systematic nature of the search. Furthermore, local
search algorithms can get trapped in local minima and plateau regions of the search space [19,
18], leading to premature stagnation of the search. One of the simplest mechanisms for avoiding
premature stagnation of the search is random restart, which reinitializes the search if after a fixed
number of steps (cutoff time) no solution has been found. In fact, random restart is used in many
local search algorithms for SAT and also in some for MAX-SAT.

A general outline of a local search algorithm for MAX-SAT is given in Figure 1. The generic
procedure initializes the search at some truth value assignment and then iteratively flips some
variable’s truth value, where the selection of the variable depends on the formula

.
and the

current assignment. It terminates after a maximum of maxSteps flips.

In the special case of local search algorithms for SAT, often an additional restart mechanism
is used that restarts the local search from a new, random initial assignment if after maxSteps
no solution is found. In this case the algorithm terminates after a given number maxTries of
unsuccessful restarts.

procedure LocalSearch for MAX-SAT
input MAX-SAT formula

�
in CNF, maxSteps

output best solution found� := initAssign � ��� ;�
best := � ;

for ���	��
 to maxSteps do
if �� � ��� �� � best

�
then � best := � ;

if � satisfies
�

then return � ;
else�

:= chooseVariable(
��� �);� := � with truth value of

�
flipped;

end if
end for

return � best;
end LocalSearch for MAX-SAT

Figure 1: Outline of a general local search procedure for MAX-SAT.

For many concrete algorithms, and in particular, for all algorithms investigated here, ini-
tAssign randomly chooses the initial assignment from the set of all possible assignments ac-
cording to a uniform distribution. Hence, the main difference between local search algorithms
for MAX-SAT is typically the implementation of the step function as given by the procedure
chooseVariable.

5

3.2 The GSAT Architecture

The GSAT algorithm was introduced in 1992 by Selman, Levesque, and Mitchell [59]. It is
based on a rather simple idea: GSAT tries to maximize the number of satisfied clauses by a
greedy ascent in the space of variable assignments. Variable selection in GSAT and most of its
variants is based on the score of a variable � under the current assignment � ; this is defined as
the difference between the weight of the clauses unsatisfied by � and the assignment obtained
by flipping � in � .

�

3.2.1 Basic GSAT

The basic GSAT algorithm uses the following instantiation of the procedure chooseVariable(� � .).
In each local search step, one of the variables with maximal score is flipped. If there are several
variables with maximal score, one of them is randomly selected according to a uniform distri-
bution. A straightforward implementation of GSAT may be rather inefficient, since in each step
the score of all variables would have to be calculated from scratch. The key to efficiently imple-
menting GSAT is to evaluate the complete set of scores only once at the beginning of each try,
and then after each flip to update only the scores of those variable which were possibly affected
by the flipped variable.

One problem with basic GSAT is that it can easily get stuck in local minima of the objective
functions. As these might contain a large number of search space positions, between which
GSAT can arbitrarily wander, local minima cannot be efficiently detected in general and the
built-in random restart mechanism is the only way for escaping from these.

3.2.2 GSAT with Random Walk (GWSAT)

An important extension of the basic GSAT algorithm is GSAT with random walk (GWSAT) [58]
that introduces a second type of local search step, the so-called random walk step. In a random
walk step, first a currently unsatisfied clause � �

is randomly selected. Then, one of the variables
appearing in � �

is flipped, thus effectively forcing � �
to become satisfied. The basic idea of

GWSAT is to decide at each local search step with a fixed probability p (called walk probability
or noise setting) whether to do a standard GSAT step or a random walk step. Obviously, for
arbitrary p � � this algorithm allows arbitrary sequences of random walk steps; as detailed
in [36], this implies that from arbitrary assignments, a model (if existent) can be reached with a
positive, bounded probability, making this algorithm probabilistically approximately complete
(PAC).

3.2.3 GSAT with tabu search (GSAT/TABU)

Another well-known mechanism for preventing the search from getting stuck in local optima is
tabu search [22, 24, 30]. The general idea is to forbid reversing the effect of a particular move

�
To avoid possible confusion with other descriptions of GSAT, in the following few subsections we treat MAX-

SAT in its minimization form, which is the form actually attacked by GSAT.

6

for a number tl of iterations; the parameter tl is called the tabu tenure. This mechanism can
be easily added to basic GSAT [30, 44, 62]; in the resulting algorithm, after a variable � has
been flipped it cannot be flipped back within the next tl steps. GSAT/TABU can be efficiently
implemented by storing for each variable � the iteration number ��� when it was last flipped.
When initializing the search, all the ��� are set to � ���

and every time a variable � is flipped, ���
is set to the number � of the current iteration. Obviously, a variable � can only be flipped if
� � �	��
 ���

.

It should be noted that GSAT/TABU corresponds basically to the Steepest Ascent–Mildest
Descent algorithm proposed by Hansen and Jaumard [30], but for SAT it was rediscovered only
much later.

3.2.4 HSAT

HSAT [20] is another GSAT variant where the local search steps make use of history informa-
tion. When in a search step there are several variables with identical score, HSAT selects the
least recently flipped variable, that is, the variable which was flipped longest ago. Only shortly
after search initialization, when there are still variables which have not been flipped, a random
selection like in GSAT is done. Although when compared to plain GSAT, HSAT was found to
show superior performance [20], it is clear that it is even more likely to get stuck in local min-
ima from which it cannot escape, as the additional history-based tie-breaking rule effectively
restricts the search trajectories when compared to GSAT. Therefore, it appears to be attractive to
extend HSAT with the same random walk mechanism as used in GWSAT; the resulting variant
is called HWSAT [21], and like GWSAT it has the PAC property.

3.3 The WalkSAT Architecture

The WalkSAT architecture is based on ideas first published by Selman, Kautz, and Cohen in
1994 [58] and it was later formally defined as an algorithmic framework by McAllester, Sel-
man, and Kautz in 1997 [45]. It is based on a 2-stage variable selection process focused on the
variables occurring in currently unsatisfied clauses. For each local search step, in a first stage
a currently unsatisfied clause � �

is randomly selected. In a second step, one of the variables
appearing in � �

is then flipped to obtain the new assignment. Thus, while the GSAT archi-
tecture is characterized by a static neighborhood relation between assignments with Hamming
distance one, WalkSAT algorithms are effectively based on a dynamically determined subset of
the GSAT neighborhood relation.

3.3.1 WalkSAT

WalkSAT, originally introduced in [58], differs in one important aspect from the other local
search variants discussed here: The scoring function ���������� � ��� used by WalkSAT counts only
the weight of the clauses that are broken — that is, which are currently satisfied, but will become
unsatisfied by flipping a given variable. Using this scoring function, the following variable
selection scheme is applied: If there is a variable with ���������� � ����� � in the clause � �

selected

7

in stage 1, that is, if � �
can be satisfied without breaking another clause, this variable is flipped

(“zero-damage” flip). If no such variable exists, with a certain probability p (noise setting) the
variable with maximal ���������� value is selected; in the remaining cases, one of the variables from
� �

is randomly selected (random walk flip).

Conceptually as well as historically, WalkSAT is closely related to GWSAT. However, there
are a number of significant differences between both algorithms, which in combination ac-
count for the generally superior performance of WalkSAT when applied to SAT. While both
algorithms use the same kind of random walk steps, WalkSAT applies them only under the con-
dition that there is no variable with ���������� � ��� � � . In GWSAT, however, random walk steps are
done in an unconditional probabilistic way. From this point of view, WalkSAT is greedier, since
random walk steps, which usually increase the weight of the unsatisfied clauses, are only done
when every variable occurring in the selected clause would break some clauses when flipped.
Yet, in a greedy step, WalkSAT chooses due to the two-stage variable selection scheme from a
significantly reduced set of neighbors and can, therefore be considered to be less greedy than
GWSAT. Finally, because of the different scoring function, in some sense, GWSAT shows a
greedier behavior than WalkSAT: For a GSAT step, it would prefer a variable which breaks
some clause but compensates for this by fixing some other clauses, while in the same situation,
WalkSAT would select a variable with a smaller total score.

3.3.2 WalkSAT/TABU

Analogously to GSAT/TABU, there is also a WalkSAT variant which uses a Tabu Search mech-
anism. This algorithm is called WalkSAT/TABU [45]. It uses the same two stage selection
mechanism and the same scoring function ���������� as WalkSAT and additionally enforces a tabu
tenure of tl steps for each flipped variable. Here, if no zero damage flip can be made, from all
variables which are not tabu, the one with the highest ���������� value is picked; when there are
several variables with the same maximal score, one of them is randomly selected according to
a uniform distribution. As a result of the two-level variable selection scheme, it may however
happen that all variables appearing in the selected clause cannot be flipped because they are
tabu. In this case, no variable is flipped (a so-called null-flip).

3.3.3 Novelty

Novelty, introduced in [45], is one of the most recent local search algorithms for SAT. Con-
ceptually, it combines the algorithms based on the WalkSAT architecture with a history-based
variable selection mechanism in the spirit of HSAT. Novelty, too, is based on the intuition, that
repeatedly flipping back and forth the same variable should be avoided. Additionally, like for
tabu search variants, the number of local search steps which have been performed since it was
last flipped (also called the variable’s age) is taken into consideration. An important difference
of Novelty to WalkSAT and WalkSAT/TABU is that it uses the same scoring function as GSAT.

In Novelty, after an unsatisfied clause has been chosen, the variable to be flipped is selected
as follows. If the variable with the highest score does not have minimal age among the variables
within the same clause, it is always selected. Otherwise, it is only selected with a probability

8

of 1-p; in the remaining cases, the variable with the next lower score is selected. In Kautz’
and Selman’s implementation, if there are several variables with identical score, always the one
appearing first in the clause is chosen.

3.3.4 R-Novelty

R-Novelty, also introduced in [45], is a variant of Novelty which is based on the intuition
that, when deciding between the best and second best variable (using the same score function
as for Novelty), the actual difference of the respective scores should be taken into account.
Note that the R-Novelty heuristic is quite complex – as reported in [45], it was discovered by
systematically testing a large number of WalkSAT variants.

3.4 Complex Neighborhoods for SAT

Most known local search algorithms for SAT and MAX-SAT rely on the 1-flip neighborhood.
One exception is the 2 and 3-flip neighborhood local search algorithm for MAX-SAT proposed
by Yagiura and Ibaraki [67, 68]. Because the computational time to examine the effects of 2 and
3-flips is high, they use special data structures to speed-up as much as possible the neighborhood
evaluation. In addition, they propose restrictions to both neighborhoods that allow to prune non-
improving moves from the neighborhood. Computational results from integrating the resulting
local search algorithms into metaheuristics like iterated local search and tabu search, showed
promising results for weighted MAX-SAT as well as encoded problems such as set covering
and time tabling.

A different extension is the Multi-flip approach by Strohmaier [63] for SAT, where several
independent flips, that is, only variables are flipped that do not occur in a same clause, are
executed in parallel. The advantage of that approach is that the effect of independent flips is
the sum of the single flips. The independent set of flips is determined via a neural network type
architecture.

In a similar spirit, Roli [54, 55] proposes to perform flips in parallel without taking into
account possible interactions among the variables. More exactly, he divides the variables into �
subsets of equal cardinality and for each of the � sets flips the variable having the highest score
in the set; the evaluation of a variable flip is done as if all the other variables did not change.

3.5 Non-oblivious local search

To guide the local search typically Equation 3 is used as the evaluation function to rate solutions.
Yet, it was shown [1, 42], that by different, so called non-oblivious objective functions better
worst-case approximation ratios for unweighted MAX-SAT can be guaranteed by a descent
local search algorithm. Non-oblivious objective functions for unweighted MAX-SAT weight
the objective function according to how many literals are true in a clause. Let � # be the set of
clauses in which exactly � literals are true and ����#�� is the number of clauses in set � # . Then, for
example, the theoretically derived non-oblivious objective function is � 	�� �����
��
	� �
���%��� .

9

Battiti and Protasi [5] performed some experiments with non-oblivious objective functions
for unweighted MAX-SAT. The found that when considering only a pure iterated descent algo-
rithm, also improved average behavior � was obtained. Further improvements could be obtained
by running an oblivious local search (that uses objective function 3 for guidance) after the de-
scent with the non-oblivious objective function. Yet, when using the non-oblivious function in
local search algorithms that may escape from local optima, better results were obtained with
the standard oblivious objective function. Anyway, with a hybrid approach that used the non-
oblivious function in the initial descent phase and from then on a sophisticated tabu search
algorithm, they at least obtained better behavior in this initial search phase.

3.6 Other local search algorithms for SAT

Apart from the presented GSAT and WalkSAT algorithms and their variants, numerous other
local search algorithms for SAT have been proposed. Here we give a short overview of these
algorithms, because these algorithms could be applied to MAX-SAT as well. Nevertheless, we
include only such approaches that were tested on native SAT instances and not on MAX-SAT.
Metaheuristics for MAX-SAT are discussed in the next section.

One particularly interesting technique that provides the basis for a number of local search al-
gorithms studied in literature is “clause weighting”. The underlying idea is to associate weights
to the clauses of the given CNF formula weights that are modified during the local search pro-
cess [10, 16, 17, 46, 48, 56, 57]. The scoring function, which is used for choosing a variable to
be flipped, then tries to maximize the weight of the satisfied clauses. Typically, the weights of
the clauses that are unsatisfied at a local minimum are increased by some constant.

In [57] weights are only modified after each GSAT try by increasing the weight of unsatisfied
clauses by one. In [48] the breakout method is proposed which adjusts the clause weights during
a single try. In particular, each time the algorithm encounters a local minimum, the weights of
the currently violated clauses are increased. In [10, 16, 17] different strategies of how to change
the weights during a single try are investigated. Computational results are presented in [10] for
a class of randomly generated instances which have only one single solution [2]. For the hard-
est of these instances considerable improvements of the weighting scheme when compared to
GSAT and GWSAT have been observed. Yet, the instances used in that comparison are not in-
trinsically hard because they can be solved by polynomial simplifications (unit propagation and
unary / binary failed clauses). Experimental results presented in [16, 17] show that the weight-
ing strategies significantly improve over GSAT and give somewhat better results than HSAT on
Random-3-Sat instances. More concretely, using the weighting schemes proposed, the average
number of flips needed to find a solution is reduced by ca. 50% when compared to HSAT. More
recently, better performance could be obtained with the guided local search approach by Tsang
and Mills [46], which also was applied to MAX-SAT and therefore is discussed in the next
section, and the weighting scheme implemented by Schurmanns and Southey [56]. Yet, it is
not clear how efficient the proposed schemes can be implemented since the weights have to be
modified rather frequently and the single search steps are certainly more expensive—in terms
of CPU time—than for GSAT.

�
Note that the theoretical results hold only for the worst-case behavior and therefore this is a non-trivial result.

10

Many other local search variants which are very popular in the Operations Research commu-
nity have been applied to SAT. These include methods based on Simulated Annealing [6, 61,
58], Evolutionary Algorithms [27, 14], Ant Colony Optimization [13], and Greedy Randomized
Adaptive Search Procedures (GRASP) [52]. Yet, from the data published on the performance
of these algorithms, there is no evidence that they might generally perform significantly better
for SAT than the best performing algorithms of the GSAT or WSAT architecture. For exam-
ple, in [6] it has been shown that GSAT performs better than Simulated Annealing on hard
Random-3-SAT instances.

4 Metaheuristic approaches to MAX-SAT

In this section we present the available metaheuristic approaches to tackle MAX-SAT. The
different approaches are ordered according to the type of metaheuristic applied. Note that in
this section, we only refer to approaches that are intended to solve the MAX-SAT problem and
not SAT. Additional metaheuristic approaches to SAT were referenced in the previous section.
If not mentioned otherwise, the following approaches all use a 1-flip local search neighborhood.

4.1 Approaches based on GSAT or WSAT implementations

Few applications of the GSAT or WSAT variants introduced before were reported for MAX-
SAT. Some few results with GWSAT for unweighted MAX-3-SAT instances were given in [58]
and some results for SAT-encoded Steiner Tree problems with a WalkSAT variant for weighted
MAX-SAT were reported [38].

4.2 Approaches based on Tabu Search

MAX-SAT was one of the first application problems to which (simple) tabu search algorithms
were applied [22, 23, 24, 30]. In fact, in one of the papers in which tabu search algorithms
were first proposed, in the paper on the steepest ascent, mildest descent (SAMD) approach
by Hansen and Jaumard [30], the target application was MAX-SAT. In that paper the SAMD
algorithm was shown to be superior to several approximation algorithms by Johnson [39] and
simulated annealing on a set of randomly generated, unweighted MAX-SAT instances. In fact,
the SAMD algorithm is quite close to the tabu search extension of GSAT.

A second, rather elaborate history-based algorithm is the reactive search by Battiti and Pro-
tasi [4]. The main idea underlying the approach is to have a two phase approach consisting of a
simple, GSAT-type local search and a tabu search phase, the tabu search algorithm being close
to GSAT/TABU. The tabu search phase is run for � � ��� +
 � iterations, where

� +
is the tabu

tenure. After the tabu search stops, a GSAT local search is executed until the local search is
trapped in a local optimum � and then the Hamming distance to the starting point is measured.

�
Let us note that this algorithm can also be considered as an iterated local search algorithm, where the per-

turbation corresponds to the tabu search phase in this algorithm and the acceptance criterion accepts every new
solution.

11

Based on the resulting distance, the tabu tenure is adjusted (hence, the name reactive search)
and again the tabu search phase is initiated. we refer to the original paper for details how this is
done.

Apart from this reactive scheme to dynamically adapt the tabu tenure, three more details
are interesting in that approach. First, in the initial descent phase, the algorithm uses the non-
oblivious objective function, which was presented in Section 3.5, to guide the local search. �
Second, a particular tie breaking criterion is used: if several variable flips give the same best
improvement, variables satisfying more new clauses (that are not satisfied under the current
assignment) are preferred. If more than one move satisfies this criterion, a random choice is
done. Third, the algorithm restarts from a randomly generated solution after �� � steps are
executed in the local search.

The reactive search algorithm was tested on randomly generated MAX-3-SAT instances as
explained in Section 2. The algorithm was shown to perform very well and seems to be among
the currently best performing algorithms for unweighted MAX-SAT instances.

4.3 Greedy Randomized Adaptive Search Procedures

Typically, local search algorithms for SAT and MAX-SAT start from random initial solutions.
In the Greedy Randomized Adaptive Search Procedures (GRASP) approach to MAX-SAT by
Resende Resende, Pitsoulis, and Pardalos [53, 49] a randomized greedy construction heuristic
is used to generate good initial solutions for a subsequent local search phase. The GRASP
approach was tested on a small set of weighted MAX-SAT instances with 100 variables (see
details on these instances in Section 2) yielding optimal solutions for several instances.

�
Yet, the

GRASP approach nowadays is outperformed by many other algorithms for MAX-SAT which
are presented next.

4.4 Weighting schemes

Several of the local search algorithms for MAX-SAT make use of clause weighting schemes to
improve the search performance. These algorithms actually try to escape from local optima by
dynamically changing the evaluation function for rating the truth value assignments. Several
such approaches, as described in Section 3.6, have earlier been applied to SAT.

There are currently two prominent approaches the discrete Lagrangian method by Shang
and Wah [60] and recent improvements thereof by Wu and Wah [66], which is, as the name
suggests, an adaptation of the usual Lagrangian method for continuous optimization. As such
it has a more solid mathematical foundation than previous, more ad-hoc weighting schemes
mainly applied to SAT. The method consists in iteratively adapting the clause weights after a

�
Unpublished experiments by some the authors of this report showed that, for the benchmark instances applied

by Battiti and Protasi, this seems rather to be an unnecessary complication of the algorithm than a key element to
achieve high performance.�

Note that when treated as SAT, some of the instances tested are actually satisfiable and the optimal solution
has a value corresponding to the sum of the weights of all clauses. For the other instances, optimal solutions were
determined by solving them with CPLEX, an integer programming software.

12

local search was trapped in a local optimum of the evaluation function, for details we refer again
to the original papers.

More recently, guided local search (GLS) was applied to weighted MAX-SAT problems by
Mills and Tsang [46]. This method differs from the previous one mainly in the way the weight
update is done and in the local search algorithm. While the Lagrangian methods use adaptations
of tabu search, the GLS approach uses HSAT as the underlying search engine. Whenever the
local search is deemed to be trapped in a local optimum, the clause weights are adapted.

Both weighting schemes showed excellent performance on the benchmark instances intro-
duced by Resende, Pitsoulis, and Pardalos [53], outperforming the GRASP approach. Of the
two approaches, the GLS appears to have a slightly better performance. Unfortunately, no re-
sults of these algorithms for larger instances or unweighted MAX-SAT instances are available.

4.5 Variable Neighborhood Search

Variable neighborhood search (VNS) was recently applied to the (weighted) MAX-SAT prob-
lem [31, 32]. Some initial results with a basic VNS algorithms showed comparable performance
to a (simple) tabu search algorithm when applied to the MAX-SAT instances by Resende at
al. [53] and both algorithms significantly outperformed the GRASP approach described before.
To further improve the performance of the VNS algorithm, Hansen et al. introduced an exten-
sion of VNS, called skewed VNS, and tested it on set of randomly generated instances with
real weights. A final comparison among the basic VNS, the tabu search and the skewed VNS
showed that the latter gave a significantly better performance and the performance gap between
the algorithms increased with instance size.

4.6 Genetic Algorithms

Few applications of genetic algorithms to MAX-SAT exist [50, 51, 7]. It should be noted that
it is rather straightforward to apply genetic algorithms to MAX-SAT because the solutions can
naturally be represented as binary strings and all the standard crossover and mutation operators
working on binary strings can be applied in a straightforward way. Yet, judging from the com-
putational results presented so far, pure genetic algorithms that do not incorporate local search
show a relatively poor performance. Nevertheless, some insights into the behavior of genetic
algorithms for MAX-SAT have been identified [50, 51].

5 Other algorithmic approaches to MAX-SAT

5.1 “Classical” approximation algorithms

For some approximation algorithms bounds on their worst case behavior can be given. For
example, there could be obtained for the non-oblivious local search presented in Section 3.5
non-trivial bounds on the quality of the solutions it returns in the worst case, better than that

13

for oblivious local search. Traditionally, many such approximation algorithms with provable
bounds on their worst case behavior are based on constructive algorithms. One of the first
examples are the approximation algorithms by Johnson [39] for which it could be proved that
it is a
� -approximation algorithm. (We say an algorithm for a maximization problem is an
� -approximation algorithm if it produces in polynomial time a solution � such that

���
� � �

� � ��� � opt � , where � opt is an optimal solution.)

Following these initial results, several approximation algorithms yielding even better worst
case behavior improved. These include the algorithms by Yannakakis [69] and Goemans and
Williamson [25], which both achieve � � �

�
. Slightly improved approximation ratios could be

obtained in an algorithm based on semidefinite programming which is again due to Goemans
and Williamson [26].

For the special cases of MAX-2-SAT and MAX-3-SAT tighter approximation guarantees can
be obtained. For MAX-2-SAT a 0.931-approximation algorithm can be obtained [15, 26], while
for MAX-3-SAT an 0.801-approximation algorithm is known [64]. Nevertheless, unless � �� � , no approximation algorithm for MAX-SAT will be able to guarantee � -approximations
with � arbitrarily close to one. In fact, the strongest negative results on the approximability of
MAX-SAT were given by Håstad [33], who proved that MAX-SAT cannot be approximated
in polynomial time with a performance ratio greater than ��	�� . When restricted to MAX-2-
SAT [33] showed that no performance ratio greater than 0.955 can be obtained.

5.2 Exact algorithms

Most exact algorithms for MAX-SAT are based either on Branch & Bound type extensions of
backtracking algorithms derived from the Davis-Logeman-Loveland procedure (DLL) [12] or
on integer programming approaches.

Currently the best available exact algorithms for SAT are based on the DLL procedure, a
backtracking procedure enhanced by techniques like unit propagation etc. It is rather straight-
forward to extend this procedure to solve MAX-SAT problems [9, 65]. To do so a lower bound+��

on the weight of satisfied clauses is maintained and updated each time a new best solution is
found. Additionally one keeps track of the weight 	 � of the clauses that are unsatisfiable given
the current partial assignment. Let
 be the sum all all clause weights, that is
 ��� �# *
 � # . If
we have
 �	 ��� +��

, the current partial solution cannot be extended to a better solution than
the incumbent one. In this case one can discard this partial solution and invoke backtracking.

For the application of standard integer programming techniques, the first step is to obtain an
integer linear programming (ILP) formulation of MAX-SAT. This can be done in a straightfor-
ward way by defining ��# as a binary variable with ��#�� if clause ��# is satisfied and ��#$� �
otherwise. Then, the ILP formulation is

�����
��
) *

�) ���)

subject to the constraints

14

�
� ' � #�������� #
	 #��� �"#

�
� ' � #���!������	 #���

� � �"# � � �) � � � ��������� �

�"#�� � � � � � � � �����������
�) � � � � � ��� � ��������� �

�) occurs only on the right-hand side of one constraint and in the objective function. There-
fore, �) will only be one, if the constraint, that is, the clause is satisfied.

There exist several integer programming approaches to the SAT problem [8, 34, 35] and also
for MAX-SAT [40] of which Branch and Cut (B&C) approaches are the most successful.

A comparison of an algorithm based on DPL and a B&C algorithm by Joy, Mitchell and
Borchers showed that the DPL-based approach performed significantly better than the B&C
algorithm on MAX-3-SAT, while the B&C algorithm was found to be superior on MAX-2-
SAT problems and encoded Steiner tree problems. Hence, none of the currently exisiting exact
algorithms is dominating over the whole set of benchmark problems.

Finally, it should be mentioned that the weighted MAX-SAT instances by Resende et al. [53]
as well as the weighted MAX-SAT instances, which were used to evaluate VNS [31], with up to
500 variables were solved to optimality with CPLEX, a well known integer programming soft-
ware package. Nevertheless, judging from the computational results reported in the literature,
exact algorithms seem to limited (with the notable exception being SAT-encoded Steiner tree
problems) to instances with a few hundred variables.

6 Conclusions

In this article we have given an overview of existing algorithmic approaches to tackle the MAX-
SAT problem. While this report mainly was describing the state-of-the-art local search routines,
we shortly scetched the state-of-the-art for other approaches like approximation algorithms with
known worst-case performance guarantees and exact algorithms.

If high quality solutions for large MAX-SAT instances are required, the current state-of-the-
art for the MAX-SAT problems suggests that metaheuristic approaches are the currently most
efficient solution techniques. Typically they outperform classical approximation algorithms [5]
and the application of exact algorithms is limited to rather small instances with at most a few
hundred of variables.

The computational results reported in the literature so far do not give a comprehensive pic-
ture on which algorithm should be preferred, because in most researches the algorithm designers
applied their algorithms only to a specific benchmark set. To anyway give some hint on the rela-
tive performance of the algorithms as far as possible, let us state that for the available weighted
MAX-SAT instances the currently best performing algorithms seem to be those using clause
weighting schemes, while for unweighted MAX-SAT (with high clause variable ratios) so far
the best results appear to have been obtained by the reactive search algorithm by Battiti and
Protasi [4].

15

The work in the Metaheuristics Network on MAX-SAT can further progress the state-of-the-
art in MAX-SAT solving. First, it might well be that the best implementations developed by
the network members will prove to perform better than existing approaches. Second, by the
systematic experimental testing, we can establish a more coherent set of benchmark instances.
Third, further analysis of the MAX-SAT problem may improve our understanding of how prob-
lem characteristics influence metaheuristic performance. Hence, MAX-SAT offers a number of
research challenges and we can expect significant results out of the work in the Metaheuristics
Network.

Acknowledgments This work was supported by the “Metaheuristics Network”, a Research
Training Network funded by the Improving Human Potential programme of the CEC, grant
HPRN-CT-1999-00106. The information provided is the sole responsibility of the authors and
does not reflect the Community’s opinion. The Community is not responsible for any use that
might be made of data appearing in this publication.

References

[1] P. Alimonti. New local search approximation techniques for maximum generalized sat-
isfiability problems. In Proceedings of the 2nd Italian Conference on Algorithms and
Complexity, pages 40–53, 1994.

[2] Y. Asahiro, K. Iwama, and E. Miyano. Random generation of test instances with con-
trolled attributes. In D.S.Johnson and M.A.Trick, editors, Cliques, Coloring, and Satis-
fiability: The Second DIMACS Implementation Challenge, volume 26 of DIMACS Series
on Discrete Mathematics and Theoretical Computer Science, pages 377–394. American
Mathematical Society, 1996.

[3] P. Asirelli, M. de Santis, and A. Martelli. Integrity constraints in logic databases. Journal
of Logic Programming, 3:221–232, 1985.

[4] R. Battiti and M. Protasi. Reactive search, a history-based heuristic for MAX-SAT. ACM
Journal of Experimental Algorithmics, 2, 1997.

[5] R. Battiti and M. Protasi. Solving MAX-SAT with non-oblivious functions and history-
based heuristics. In D. Du, J. Gu, and P.M. Pardalos, editors, Satisfiability problem: Theory
and Applications, volume 35 of DIMACS Series on Discrete Mathematics and Theoretical
Computer Science, pages 649–667. American Mathematical Society, 1997.

[6] A. Beringer, G. Aschemann, H.H. Hoos, M. Metzger, and A. Weiß. GSAT versus simu-
lated annealing. In A.G. Cohn, editor, Proceedings of the European Conference on Artifi-
cial Intelligence, pages 130–134. John Wiley & Sons, Chichester, UK, 1994.

[7] A. Bertoni, P. Campadelli, M. Carpentieri, and G. Grossi. A genetic model: Analysis and
application to MAXSAT. Evolutionary Computation, 8(3):291–309, 2000.

16

[8] C.E. Blair, R.G. Jeroslow, and J.K. Lowe. Some results and experiments in programming
techniques for propositional logic. Computers & Operations Research, 13(5):633–645,
1986.

[9] B. Borchers and J. Furman. A two-phase exact algorithm for MAX-SAT and weighted
MAX-SAT problems. Journal of Combinatorial Optimization, 2(4):299–306, 1999.

[10] B. Cha and K. Iwama. Performance tests of local search algorithms using new types
of random CNF formula. In Proceedings of the 14th International Joint Conference on
Artificial Intelligence, pages 304–309. Morgan Kaufmann Publishers, San Francisco, CA,
USA, 1995.

[11] Stephen A. Cook. The complexity of theorem proving procedures. In Proceedings of
the 3rd ACM Symposium on Theory of Computing, pages 151–156. Shaker Heights, Ohio,
1971.

[12] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving.
Communications of the ACM, 5:394–397, 1962.

[13] L. Dittmann. Anwendung des Ameisensystem auf das SAT Problem. Master’s thesis,
Intellectics Group, Darmstadt University of Technology, 1997.

[14] A.E. Eiben and J.K. van der Hauw. Solving 3-SAT with adaptive genetic algorithms. In
T. Bäck, Z. Michalewicz, and X. Yao, editors, Proceedings of the 4th IEEE Conference on
Evolutionary Computation, pages 81–86. IEEE Press, Piscataway, NJ, USA, 1997.

[15] U. Feige and M. Goemans. Approximating the value of two proper proof systems, with ap-
plications to MAX-2SAT and MAX-DICUT. In Proceedings of the 3rd Israel Symposium
on Theory and Computing Systems, pages 182–189, 1995.

[16] J. Frank. Weighting for Godot: Learning heuristics for GSAT. In Proceedings of the 13th
National Conference on Artificial Intelligence, pages 338–343. AAAI Press / The MIT
Press, Menlo Park, CA, USA, 1996.

[17] J. Frank. Learning short-term clause weights for GSAT. In Proceedings of the 15th Inter-
national Joint Conference on Artificial Intelligence, pages 384–389. Morgan Kaufmann
Publishers, San Francisco, CA, USA, 1997.

[18] J. Frank, P. Cheeseman, and J. Stutz. When gravity fails: Local search topology. Journal
of Artificial Intelligence Research, 7:249–281, 1997.

[19] I.P. Gent and T. Walsh. An empirical analysis of search in GSAT. Journal of Artificial
Intelligence Research, 1:47–59, 1993.

[20] I.P. Gent and T. Walsh. Towards an understanding of hill–climbing procedures for SAT.
In Proceedings of AAAI’93, pages 28–33. AAAI Press / The MIT Press, Menlo Park, CA,
USA, 1993.

[21] I.P. Gent and T. Walsh. Unsatisfied variables in local search. In J. Hallam, editor, Hybrid
Problems, Hybrid Solutions, pages 73–85. IOS Press, Amsterdam, the Netherlands, 1995.

17

[22] F. Glover. Tabu search – part I. ORSA Journal on Computing, 1(3):190–206, 1989.

[23] F. Glover. Tabu search – part II. ORSA Journal on Computing, 2(1):4–32, 1990.

[24] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, London, 1997.

[25] M. Goemans and D. Williamson. A new � 	�� approximation algorithm for the maximum
satisfiability problem. SIAM Journal on Discrete Mathematics, 7:656–666, 1994.

[26] M. Goemans and D. Williamson. Improved approximation algorithms for maximum
cut and satisfiability problems using semidefinite programming. Journal of the ACM,
42:1115–11145, 1995.

[27] J. Gottlieb and N. Voss. Improving the performance of evolutionary algorithms for the
satisfiability problem by refining functions. In A. E. Eiben, T. Bäck, M. Schoenauer, and
H.-P. Schwefel, editors, Proceedings of PPSN-V, Fifth International Conference on Par-
allel Problem Solving from Nature, volume 1498 of Lecture Notes in Computer Science,
pages 813–822. Springer Verlag, Berlin, Germany, 1998.

[28] J. Gu, P.W. Purdom, J. Franco, and B.W. Wah. Algorithms for the satisfiability problem:
A survey. In D. Du, J. Gu, and P.M. Pardalos, editors, Satisfiability problem: Theory
and Applications, volume 35 of DIMACS Series on Discrete Mathematics and Theoretical
Computer Science. American Mathematical Society, 1997.

[29] J. Gu and R. Puri. Asynchronous circuit synthesis with boolean satisfiability. IEEE Trans-
actions on Computer–Aided Design of Integrated Circuits, 14(8):961–973, 1995.

[30] P. Hansen and B. Jaumard. Algorithms for the maximum satisfiability problem. Comput-
ing, 44:279–303, 1990.

[31] P. Hansen, B. Jaumard, N. Mladenović, and A.D. Parreira. Variable neighbourhood search
for maximum weighted satisfiability problem. Technical Report G-2000-62, Les Cahiers
du GERAD, Group for Research in Decision Analysis, 2000.

[32] P. Hansen and N. Mladenović. An introduction to variable neighborhood search. In
S. Voss, S. Martello, I.H. Osman, and C. Roucairol, editors, Meta-Heuristics: Advances
and Trends in Local Search Paradigms for Optimization, pages 433–458. Kluwer, Boston,
1999.

[33] J. Håstad. Some optimal inapproximability results. In Proceedings of the 28th Annual
ACM Symposium on Theory of Computing, pages 1–10, 1997.

[34] J.N. Hooker. Resolution vs. cutting plane solution of inference problems: Some computa-
tional experience. Operations Research Letters, 7(1):1–7, 1988.

[35] J.N. Hooker and C. Fedjki. Branch and cut solution of inference problems in propositional
logic. Annals of Mathematics and AI, 1:123–139, 1990.

[36] H.H. Hoos. Stochastic Local Search — Methods, Models, Applications. PhD thesis, TU
Darmstadt, FB Informatik, 1998.

18

[37] H.H. Hoos and T. Stützle. Local search algorithms for SAT: An empirical evaluation.
Journal of Automated Reasoning, 24:421–481, 2000.

[38] Y. Jiang, H. Kautz, and B. Selman. Solving problems with hard and soft constraints
using a stochastic algorithm for MAX-SAT. In Proceedings of the 1st International Joint
Workshop on Artificial Intelligence and Operations Research, 1995.

[39] D.S. Johnson. Approximation algorithms for combinatorial problems. Journal of Com-
puter and System Science, 9:256–278, 1974.

[40] S. Joy, J. Mitchell, and B. Borchers. A branch and cut algorithm for MAX-SAT and
weighted MAX-SAT. In D. Du, J. Gu, and P.M. Pardalos, editors, Satisfiability problem:
Theory and Applications, volume 35 of DIMACS Series on Discrete Mathematics and
Theoretical Computer Science, pages 519–536. American Mathematical Society, 1997.

[41] A.P. Kamath, N.K. Karmarkar, K.G. Ramakrishnan, and M.G.C. Resende. A continuous
approach to inductive inference. Mathematical Programming, 57:215–238, 1992.

[42] S. Khanna, R. Motwani, M. Sudan, and U. Vazirani. On syntactic versus computational
views of approximability. In Proceedings of the 35th Annual IEEE Symposium on Foun-
dations of Computer Science, pages 819–836, Los Angeles, CA, 1994. IEEE Computer
Society.

[43] S. Kirkpatrick and B. Selman. Critical behavior in the satisfiability of random boolean
expressions. Science, 264:1297–1301, 1994.

[44] B. Mazure, L. Sais, and É. Grégoire. Tabu Search for SAT. In Proceedings of the 14th
National Conference on Artificial Intelligence, pages 281–285. AAAI Press / The MIT
Press, Menlo Park, CA, USA, 1997.

[45] D. McAllester, B. Selman, and H. Kautz. Evidence for invariants in local search. In
Proceedings of the 14th National Conference on Artificial Intelligence, pages 321–326.
AAAI Press / The MIT Press, Menlo Park, CA, USA, 1997.

[46] P. Mills and E. Tsang. Guided local search for solving SAT and weighted MAX-SAT
problems. In I.P. Gent, H. van Maaren, and T. Walsh, editors, SAT2000 — Highlights
of Satisfiability Research in the Year 2000, pages 89–106. IOS Press, Amsterdam, The
Netherlands, 2000.

[47] D. Mitchell, B. Selman, and H. Levesque. Hard and easy distributions of SAT problems.
In Proceedings of the 10th National Conference on Artificial Intelligence, pages 459–465.
AAAI Press / The MIT Press, Menlo Park, CA, USA, 1992.

[48] P. Morris. The breakout method for escaping from local minima. In Proceedings of the
11th National Conference on Artificial Intelligence, pages 40–45. AAAI Press / The MIT
Press, Menlo Park, CA, USA, 1993.

[49] P.M. Pardalos, L.S. Pitsoulis, and M.G.C. Resende. A parallel GRASP for MAX-SAT
problems. Lecture Notes in Computer Science, 1184:575–585, 1996.

19

[50] S. Rana. Examining the Role of Local Optima and Schema Processing in Genetic Search.
PhD thesis, Department of Computer Science, Colorado State University, Fort Collins,
Colorado, USA, 1999.

[51] S. Rana and D. Whitley. Genetic algorithm behavior in the maxsat domain. In A. E.
Eiben, T. Bäck, M. Schoenauer, and H.-P. Schwefel, editors, Proceedings of PPSN-V,
Fifth International Conference on Parallel Problem Solving from Nature, volume 1498 of
Lecture Notes in Computer Science, pages 785–794. Springer Verlag, Berlin, Germany,
1998.

[52] M.G.C. Resende and T.A. Feo. A GRASP for satisfiability. In D.S. Johnson and M.A.
Trick, editors, Cliques, Coloring, and Satisfiability: Second DIMACS Implementation
Challenge, volume 26 of DIMACS Series on Discrete Mathematics and Theoretical Com-
puter Science, pages 499–520. American Mathematical Society, 1996.

[53] M.G.C. Resende, L.S. Pitsoulis, and P.M. Pardalos. Approximate solution of weighted
MAX-SAT problems using GRASP. In D. Du, J. Gu, and P.M. Pardalos, editors, Sat-
isfiability problem: Theory and Applications, volume 35 of DIMACS Series on Discrete
Mathematics and Theoretical Computer Science, pages 393–405. American Mathematical
Society, 1997.

[54] A. Roli. Criticality and parallelism in GSAT. In Working Notes for SAT2001: Workshop
on the Satisfiability Testing, 2001.

[55] A. Roli and C. Blum. Critical parallelization of local search for MAX-SAT. In Procedings
of AI*IA, 7th Congress of the Italian Association of Artificial Itnelligence, 2001.

[56] D. Schuurmans and F. Southey. Local search characteristics of incomplete SAT proce-
dures. In Proceedings of the 17th National Conference on Artificial Intelligence, pages
297–302. AAAI Press / The MIT Press, Menlo Park, CA, USA, 2001.

[57] B. Selman and H. Kautz. Domain-independent extensions to GSAT: Solving large struc-
tured satisfiability problems. In Proceedings of the 13th International Joint Conference
on Artificial Intelligence, pages 290–295. Morgan Kaufmann Publishers, San Francisco,
CA, USA, 1993.

[58] B. Selman, H.A. Kautz, and B. Cohen. Noise strategies for improving local search. In
Proceedings of the 12th National Conference on Artificial Intelligence, pages 337–343.
AAAI Press / The MIT Press, Menlo Park, CA, USA, 1994.

[59] B. Selman, H. Levesque, and D. Mitchell. A new method for solving hard satisfiability
problems. In Proceedings of the 10th National Conference on Artificial Intelligence, pages
440–446. AAAI Press / The MIT Press, Menlo Park, CA, USA, 1992.

[60] Y. Shang and B.W. Wah. Discrete lagrangian-based search for solving MAX-SAT prob-
lems. In Proceedings of the 15th International Joint Conference on Artificial Intelligence,
volume 1, pages 378–383. Morgan Kaufmann Publishers, San Francisco, CA, USA, 1997.

20

[61] W.M. Spears. Simulated annealing for hard satisfiability problems. Technical report,
Naval Research Laboratory, Washington D.C., 1993.

[62] O. Steinmann, A. Strohmaier, and T. Stützle. Tabu search vs. random walk. In Advances
in Artificial Intelligence (KI97), volume 1303 of LNAI, pages 337–348. Springer Verlag,
1997.

[63] A. Strohmaier. Multi-flip networks for SAT. In Proceedings of KI-98, Lecture Notes in
Computer Science. Springer Verlag, Berlin, Germany, 1998.

[64] L. Trevisan, G.B. Sorkin, M. Sudan, and D.P. Williamson. Gadgets, approximation, and
linear programming. In Proceedings of the 37th Annual IEEE Symposium on Foundations
of Computer Science, pages 617–626, 1996.

[65] R.J. Wallace and E.C. Freuder. Comparative studies of constraint satisfaction and davis-
putnam algorithms for maximum satisfiability problems. In D.S. Johnson and M.A. Trick,
editors, Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge,
volume 26 of DIMACS Series on Discrete Mathematics and Theoretical Computer Sci-
ence, pages 587–615. American Mathematical Society, 1996.

[66] Z. Wu and B.W. Wah. Trap escaping strategies in discrete lagrangian methods for solving
hard satisfiability and maximum satisfiability problems. In Proceedings of the 16th Na-
tional Conference on Artificial Intelligence, pages 673–678. AAAI Press / The MIT Press,
Menlo Park, CA, USA, 1999.

[67] M. Yagiura and T. Ibaraki. Efficient 2 and 3-flip neighborhoods seach algorithms for
the MAX SAT. In W.-L. Hsu and M.-Y. Kao, editors, Computing and Combinatorics,
volume 1449 of Lecture Notes in Computer Science, pages 105–116. Springer Verlag,
Berlin, Germany, 1998.

[68] M. Yagiura and T. Ibaraki. Analyses on the 2 and 3-flip neighborhoods for the MAX SAT.
Journal of Combinatorial Optimization, 3:95–114, 1999.

[69] M. Yannakakis. On the approximation of maximum satisfiability. In Proceedings of the
Third ACM–SIAM Symposium on Discrete Algorithms, pages 1–9, 1992.

21

