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1 Introduction

The quadratic assignment problem (QAP) is an important problem in theory and practice. It
was , which was introduced by Koopmans and Beckmann in 1957 [28] and is a model for many
practical problems like backboard wiring [53], campus and hospital layout [15, 17], typewriter
keyboard design [9], scheduling [23] and many others [16, 29] can be formulated as QAPs.
Intuitively, the QAP can best be described as the problem of assigning a set of facilities to a set
of locations with given distances between the locations and given flows between the facilities.
The goal then is to place the facilities on locations in such a way that the sum of the product
between flows and distances is minimal.

More formally, given � facilities and � locations, two ����� matrices
�����
	�����

and � �����������
,

where
	���

is the distance between locations � and � and
�����

is the flow between facilities � and� , the QAP can be stated as follows:

�! #"$&%('*),+(-/. $ � +0 �2143
+05143 ���
6	 $879$;: (1)

where <>= �@? is the set of all permutations (corresponding to the assignments) of the set of inte-
gers ACB*DFEGEGEFD �IH , and J � gives the location of facility � in the current solution J�KL<>= �M? . Here���
6	 $872$;: describes the cost contribution of simultaneously assigning facility � to location J � and
facility � to location J  .

3
N
A more general form of the QAP was introduced by Lawler [31], but here we will focus on the above given
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The term quadratic stems from the formulation of the QAP as an integer optimization prob-
lem with a quadratic objective function. Let � �
 be a binary variable which takes value 1 if
facility � is assigned to location � and 0 otherwise. Then the problem can be formulated as:

�! #" +0 �2143
+05143

+0
� 143

+0
� 143

	*�
�� ��� � � � �  � (2)

subject to the constraints
� +�2143 � �
>� B , � +5143 � �
>� B , and � K A�� DGB H .

The QAP is a �	� -hard optimization problem [48]; even finding a solution within a factor of
B�
� of the optimal one remains ��� -hard [48, 45]. It is considered as one of the hardest opti-
mization problems, because exact algorithms show a very poor performance on the QAP. In fact,
the largest, non-trivial instance solved to optimality today is of size � ��� � ! Therefore, to prac-
tically solve the QAP one has to apply heuristic algorithms. Several such heuristic algorithms
have been proposed which include algorithms ranging from simple iterative improvement to
sophisticated metaheuristic implementations.

In this report we will give an overview of local search and metaheuristics for the Quadratic
Assignment Problem. For a more complete overview of the QAP, including exact algorithms,
applications and mathematical results we refer to the overview articles by Finke, Burkard and
Rendl [18] and by Pardalos, Rendl and Wolkowicz [44] and the book be Cela [11].

The report is structured as follows. In Section 2 we give an overview of existing benchmark
problems, a classification of these benchmark problems, and indicate some results from a search
space analysis of these problems. Next, in Section 3 we explain the functioning of local search
for the QAP and indicate some local search variants. Section 4 contains an overview over
metaheuristic approaches to the QAP and we conclude in Section 5.

2 Benchmark instances

Approximate algorithms are commonly tested on benchmark instances which posess interesting
properties, have been attacked by a number of algorithmic approaches, or stem from applica-
tions. In the QAP case, a large number of such benchmark instances is available via QAPLIB, a
library for research on the QAP. QAPLIB contains currently over 100 instances that have been
used in earlier researches and in part they stem from real applications like hospital layout (like
the kra30* or the els19 instances), typewriter design (like the bur26* instances), etc. In
addition, QAPLIB also contains a number of other resources like pointers to literature, some
source codes and links for QAP related research including a list of people with research interests
in the QAP.

Regarding the instances available from QAPLIB, disadvantages are that only a small number
of instances is available that are large enough to pose a real challenge to state-of-the-art meta-
heuristics. Second, the instances in QAPLIB do not vary systematically in their characteristics
and therefore their utility is limited for analyzing the performance of metaheuristics in depen-

Koopmans–Beckmann formulation because it is much more widely used.
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dence of the instance characteristics. Nevertheless, QAPLIB is very useful and certainly the
first address for QAP related information on the WWW.

Further benchmark instances may be obtained by encodings of related problems like the
Traveling Salesman Problem or Graph Partitioning into QAP, although such instances are not
very commonly used.

2.1 Classification of benchmark instances

For the QAP it is known that there are several different types of instances and that the particular
instance type has a considerable influence on the performance of heuristic methods. According
to Taillard [60], the instances of QAPLIB can be classified into the following four classes.

= � ? Unstructured, randomly generated instances: Instances with the distance and flow
matrix entries generated randomly according to a uniform distribution. These instances
are among the hardest to solve exactly. Nevertheless, most iterative search methods find
solutions within B�� ���

from the best known solutions relatively fast.

= � � ? Grid-based distance matrix: In this class of instances the distance matrix stems from a� 3 � ��� grid and the distances are defined as the Manhattan distance between grid points.
These instances have multiple global optima (at least 4 in case � 3��� ��� and at least 8 in
case � 3 � ��� ) due to the definition of the distance matrices.

= � � � ? Real-life instances: Instances from this class are “real-life” instances from practical ap-
plications of the QAP. Real-life problems have in common that the flow matrices have
many zero entries and the remaining entries are clearly not uniformly distributed. The
matrix entries exhibit a clear structure which is the main difference between these real-
life instances and the randomly generated instances from class = � ? .

= �
	 ? Real-life-like instances: Since the real-life instances in QAPLIB are mainly of a rather
small size, a particular type of randomly generated problems has been proposed in [60].
These instances are generated in such a way that the matrix entries resemble the distribu-
tions found in real-life problems.

Let us add two further remarks on the instances from QAPLIB. First, some of the instances
were generated randomly with known optimal solutions with a generator proposed by Li and
Pardalos [32]. This allows to evaluate the solution quality of metaheuristics with respect to
known optimum also on large instances, which otherwise is not possible because of the poor
behavior of exact algorithms. Yet, these instances often tend to be somewhat easier than other
benchmark instances and for many large instances “pseuod-optimal” solutions [60] are known.
Here we mean with “pseudo-optimal” that many algorithms have found the same best known
solutions and one may assume that these are actually the optimal ones. Second, it has to be
mentioned that for many QAP instance types, the difference between the worst and the optimal
solution becomes arbitrarily small with a probability tending to one as the problem size tends
to infinity [8, 21, 46, 47, 58].
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2.2 Instance classes and search space characteristics

To differentiate among the classes of QAP instances the flow dominance (fd) can be used. It is
defined as the coefficient of variation of the flow matrix entries multiplied by 100.

fd = � ? � B � ��� �� D where (3)

� � B� � �
+0 �2143

+05143 	��� and � � ���� B� � � B �
+0 � 143

+0 143 = 	*�
 � � ?

A high flow dominance indicates that a large part of the overall flow is exchanged among
relatively few facilities. Randomly generated problems according to a uniform distribution will
have a rather low flow dominance whereas real-life problems, in general, have a rather high
flow dominance. A disadvantage of the flow dominance is that it captures only the structure of
one of two matrices, neglecting that of the distance matrix. Therefore, analogously to the flow
dominance, we can also use a distance dominance (dd).

In general, real life problems often have many zero entries and, hence, the sparsity of the
matrix can give an indication of the instance type. Let ��� be the number of “0” entries in a
matrix, then we define its sparsity �
	 as ��	 � ���� � � .

In Table 1 and 2 are given the flow and the distance dominance and the sparsity of the sparser
of the two matrices (typically, at most one matrix of these QAP instances has a sparsity larger
than � E9B ) for some instances of QAPLIB, ordered according to the four instance classes (the
other table entries are explained in the following). In general, class iii and iv instances have
the highest dominance values; the instances of class � � still habe larger flow dominance than the
randomly generated instances of class � .

Today it is widely agreed that the performance of metaheuristics depends strongly on the
shape of the underlying search space. Central to the search space analysis of combinatorial op-
timization problems is the notion of fitness landscape [52, 64]. Intuitively, the fitness landscape
can be imagined as a mountainous region with hills, craters, and valleys. The performance
of metaheuristics strongly depends on the ruggedness of the landscape, the distribution of the
valleys, craters and the local minima in the search space, and the overall number of the local
minima.

Formally, the fitness landscape is defined by

(1) the set of all possible solutions � ;

(2) an objective function that assigns to every � K�� a fitness value � = � ? ;
(3) a distance measure � = � D ���2? which gives the distance between solutions � and ��� .
The fitness landscape determines the shape of the search space as encountered by a local

search algorithm.
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Table 1: Given are the instance identifier, the flow, the distance dominance and the sparsity of some
QAPLIB instances (columns 1 to 4). The dominance values are calculated for the first A and the second
B matrix as given in QAPLIB. The number in the instance identifier is the instance dimension. The
instances are ordered according to the 4 classes described in Section 4. The remaining entries give
summary results of an analysis of the fitness-distance correlation of the QAP search space (see Section
5). In particular, ������� is the number of pseudo-optimal solutions found, �	��
 �

�
�� ����� and �	��


� � ��� ����� are the
average distance to the closest optimum solution for local search and iterated local search executed for� iterations, respectively, and � � � and � � � � are the correlation coefficients for the solution cost versus the
distance to the closest pseudo-optimal solution.

instance ���	����� ��������� � � !#"%$'& (�)+*�,.-/10 "%$'& (�)+*32.,.-/10 "%$'& 4 ,.- 4 25,.-
unstructured, randomly generated 6

tai20a 67.02 64.90 0.015 1 18.78 18.62 0.065 0.088
tai25a 61.81 64.29 0.016 1 23.83 23.64 0.064 0.059
tai30a 58.00 63.21 0.013 1 28.69 28.32 0.100 0.208
tai35a 61.64 61.57 0.010 1 33.75 33.61 0.041 0.054
tai40a 63.10 60.23 0.009 1 38.86 38.81 0.020 0.107
tai60a 61.41 60.86 0.011 1 58.82 58.71 0.025 0.006
tai80a 59.22 60.38 0.009 1 78.90 78.77 0.022 0.049
rou20 65.65 64.43 0.010 1 18.50 18.10 0.124 0.114

Instances with grid-distances 676
nug30 52.75 112.48 0.316 4 25.93 23.81 0.262 0.406
tho30 59.25 137.86 0.484 4 26.27 24.86 0.328 0.472
tho40 53.20 155.54 0.585 4 36.11 35.21 0.194 0.273
sko42 51.96 108.48 0.292 4 37.96 35.18 0.302 0.499
sko49 51.55 109.38 0.304 8 44.58 43.40 0.213 0.234
sko56 51.46 110.53 0.305 4 51.62 49.51 0.254 0.448
sko64 51.18 108.38 0.308 8 58.88 56.33 0.303 0.353
sko72 51.14 107.13 0.299 4 67.38 65.31 0.264 0.284

Two important measures have been proposed to analyze the fitness landscape. One is the fit-
ness distance correlation (FDC) [6, 26]. The FDC measures between the cost and the distance of
solutions to the closest global optima or best-known solutions if global optima are not available.
Given a set of cost values 8 � A:9 3 DGEGEGE;D�9�; H and the corresponding distances < � A � 3 DGEFEGEFD ��; H
to the closest global optimum the correlation coefficient is defined as:

� = 8�D�< ? � 9+=?>� = � � > (4)

where

9@=?> � B
A

;0�2143 =B9 � �DC9 ? = � � � C� ? (5)

and C98D C� are the average cost and the average distance, � = and � > are the standard deviations of
the costs and distances, respectively.

The second measure analyses the ruggedness of the fitness landscape. To measure the rugged-
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Table 2: Given are the instance identifier, the flow, the distance dominance and the sparsity of some
QAPLIB instances (columns 1 to 4). The dominance values are calculated for the first A and the second
B matrix as given in QAPLIB. The number in the instance identifier is the instance dimension. The
instances are ordered according to the 4 classes described in Section 4. The remaining entries give
summary results of an analysis of the fitness-distance correlation of the QAP search space (see Section
5). In particular, ������� is the number of pseudo-optimal solutions found, �	��
 �

�
�� ����� and �	��


� � ��� ����� are the
average distance to the closest optimum solution for local search and iterated local search executed for� iterations, respectively, and � � � and � � � � are the correlation coefficients for the solution cost versus the
distance to the closest pseudo-optimal solution.

instance ���	����� ��������� � � !#"%$'& (�)+*�,.-/10 "%$'& (�)+*32.,.-/10 "%$'& 4 ,.- 4 25,.-
real-life instances 6�676

bur26a 15.09 274.95 0.223 96 21.12 20.15 0.027 0.457
bur26b 15.91 274.95 0.223 690 21.26 19.72 0.021 0.678
bur26c 15.09 228.40 0.257 96 22.31 15.39 0.569 0.867
bur26d 15.91 228.40 0.257 790 20.29 18.19 0.471 0.787
bur26e 15.09 254.00 0.312 97 18.43 14.91 0.479 0.853
bur26g 15.09 279.89 0.211 96 18.47 13.89 0.666 0.876
chr25a 424.27 57.97 0.883 2 22.92 21.71 0.252 0.359
els19 52.10 531.02 0.637 1 16.85 13.76 0.550 0.654
kra30a 49.22 149.98 0.6 257 25.23 24.10 0.251 0.413
kra30b 49.99 149.98 0.6 128 24.83 23.25 0.312 0.379
ste36a 55.65 400.30 0.707 8 30.98 28.37 0.295 0.504
ste36b 100.79 400.30 0.707 8 29.59 24.76 0.381 0.778

real-life like instances 6�)
tai20b 128.25 333.23 0.410 1 17.32 14.69 0.420 0.576
tai25b 87.02 310.40 0.387 1 21.65 23.83 0.456 0.703
tai30b 85.20 323.91 0.432 1 27.71 25.47 0.264 0.518
tai35b 78.66 309.62 0.524 1 32.04 30.17 0.328 0.525
tai40b 66.75 317.22 0.503 1 37.76 35.39 0.329 0.626
tai50b 73.44 313.91 0.548 1 47.94 45.39 0.156 0.363
tai60b 76.83 317.82 0.548 1 56.88 52.28 0.366 0.540
tai80b 64.05 323.17 0.552 1 77.47 75.56 0.150 0.457
tai100b80.42 321.34 0.552 1 95.23 92.34 0.546 0.608

ness of fitness landscapes the autocorrelation function has been proposed [64]. It is given by

� = � ? � E
� = � = � ? � � = � � ? ? � � ��) ��� ��� - 1 �

E
� � � � � = E � � � ? � (6)

E
��� �

denotes the expectation of a random variable (note that here the objective function value
of a particular solution is considered to be a random variable) and � = � ? is the correlation coef-
ficient between two solutions that are at distance � . Hence, � =�B ? gives the correlation between
two neighboring solutions. If this correlation is very high, the average cost difference between
two neighboring solutions is relatively small. Thus, the landscape is only little rugged and a
local search algorithm should show good performance on such a problem. Yet, if the correla-
tion is low, the solution quality of neighboring solutions may differ very strongly. Note that
in such a case the solution quality of the current solution gives only a very limited indication
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of the quality of neighboring solutions (in fact, if the correlation is zero, the current solution
gives no information on the quality of neighboring solutions). The correlation can be calculated
exactly for some problems if the probability distribution of � = � ? can be derived from the under-
lying instance generating process [2]. Yet, for a given particular instance often the correlation
coefficient has to be estimated. To do so, in [64] it is proposed to perform a random walk over
the fitness landscape, to interpret the trajectory as a time series and to calculate the empirical
autocorrelation function �� = � ? .

To summarize the information of the autocorrelation function, several measures have been
proposed. One of these is the correlation length

�
[52] which is

� �
�

B� " �� =�B ? (7)

The correlation length gives information on how far from the current solution – on average –
one has to move such that there is not any more a significant correlation between the cost values
of solutions. Clearly, smoother landscapes will have a longer correlation length. A similar
measure is the autocorrelation coefficient [1] defined as � � B  =�B � � =�B ?5? .

Here we present some results of an analysis of the fitness distance correlation for different
QAP instances. A natural distance measure between solutions is the number of facilities which
are placed on distinct locations in two solutions � and � � , i.e., �4=�� D�� � ? � � A � � � � �� � �� H � ,
which is a direct extension of the Hamming distance. In the FDC analysis we measure the
distance to the a globally optimal solution if these are available. Where optimal solutions are
not available, we measure the distance to the best known solution. These best known solutions
are conjectured to be optimal for instances of class � � , � � � , and � 	 with up to 80 facilities, because
they are pseudo-optimal.

For the FDC analysis for the QAP one has to take into account the fact that the instances
can have multiple optimal solutions. For example, this is known to be the case for instances
where the distance matrix is defined by the distance between grid positions (class � � ), where it is
further known that these optimal solutions may be at the maximally possible distance from the
other optimal solutions (this is due to symmetries in the distance matrix). Hence, on instances
with multiple global optima or pseudo-optimal solutions we measure the distance to the closest
global optimum. Unfortunately, the exact number of global optima for these instances is not
known. Therefore, we determined in preliminary runs of an Iterated Local Search (ILS) algo-
rithm a (possibly large) number of pseudo-optimal solutions: For small instance with �	��
 �
we stopped searching for more pseudo-optimal solutions if in 1000 runs of our ILS algorithm,
each run of at least 500 iterations, we did not find any more a pseudo-optimal solution which
differs from any previously found pseudo-optimal solution; only on the larger instances of type
� � we searched for the expected number of optimal solutions (either four or eight depending on
the grid dimension). In this process we have found only one single pseudo-optimal solution for
the instances of classes � and �
	 . Therefore, we conjecture that these instances have unique op-
timal solutions. The number of pseudo-optimal solutions found for each instance are indicated
by � �7� � in Tables 1 and 2.

We run two experiments in the fitness-distance analysis: In a first experiment (denoted as E-
ls) we generated 5000 local optima (identical solutions at distance 0 among the generated local
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optima have been eliminated) with a 2-opt local search algorithm like described in the next
section and measured the distance to the closest pseudo-optimal solution; in a second series of
experiments (denoted as E-ils) we run 1000 times an ILS algorithm for � iterations (indicated by
ILS(n)), again eliminating identical solutions. This second series of experiments is motivated
by the observation that for the Travelling Salesman Problems the FDC among higher quality
solutions is larger and the average distance to the globally optimal solutions is smaller [6].

Tables 1 and 2 give, in addition to the flow and distance dominance and the sparsity, the num-
ber of pseudo-optimal solutions identified in the preliminary runs ( � ����� ), the average distances
of the local minima to the closest global optimum in E-ls (

	
	��
� ��� ����� ) and E-ils (

	
	��
� � ��� ����� ), and

the empirical FDC coefficients found in E-ls and E-ils ( � � � and � � � � , respectively).

The fitness-distance analysis shows clear differences among the behavior for the different
problem classes. For class � , all correlation coefficients are close to zero. Also the better
solutions generated by ILS(n) do not show a much higher correlation. Regarding the average
distances from the global optima, it can be observed that

	
	��
� ��� �7� � and

	
	��
� � ��� ����� are very large

for these QAP instances, close to the maximal possible value which is � and the difference
between

	
	��
� ��� ����� and

	
	��
� � ��� ����� is minimal. Differently, for most instances of the other three

classes, significant correlations exist. In fact, all correlations are statistically significant at the
� � � E ��� level with the only exception of � � � for instances bur26a and bur26b. Comparing
� � � and � � � � for instances of classes � � � �
	 we find that � � � � is typically much larger than � � � .
It is also notable that

	
	��
� � ��� ����� is always smaller than

	
	��
� ��� ����� by a factor of about � E���� . It is

also in these two latter points where the instances of classes � � � � 	 show significant differences
to those of class � . Comparing the instances of classes � � � �
	 we find that the correlation
coefficients for instances of classes � � � and � 	 are typically higher than those of class � � , which
may indicate that the instances of these later two classes are easier for the ILS algorithms than
those of class � � . Additionally, one can observe that for the instances with a high flow or distance
dominance and high sparsity also a significant FDC can be observed. Hence, these more simpler
measures already give a strong indication whether a significant fitness-distance correlation can
be expected.

In summary we can conclude that—on average—the better the solution quality the closer a
solution is to an optimal solution for the instances of classes � � � � 	 . These instance show a
structure in the following sense: The more locations of facilities a solution has in common with
an optimal solution, the better will be that solution.

3 Local search for the QAP

Local Search starts from some initial assignment and repeatedly tries to improve the current as-
signment by local changes. If in the neighborhood of the current assignment a better assignment
J � is found, it replaces the current assignment and the local search is continued from J � .

In the QAP case, the neighborhood of a permutation J is typically defined by the set of
permutations which can be obtained by exchanging two facilities. The objective function dif-
ference 	 = J D�� D � ? obtained by exchanging facilities J � and J � can be computed in 
 = �M? , using
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the following equation [60]:
�

	 = J/D�� D � ? ����� � �C= 	 $�� $�� � 	 $ � $ � ? 
 � � � �C= 	 $�� $ � � 	 $ � $�� ? 
��� � �&= 	 $ � $�� � 	 $�� $ � ? 
 ��� � �C= 	 $ � $ � � 	 $�� $�� ? 
+0
� 143 � ���1 � � � =

� � � �&= 	 $��5$�� � 	 $���$ � ? 
 � � � �&= 	 $���$ � � 	 $��5$�� ? 

��� � �C= 	 $ � $�� � 	 $ � $�� ? 
 �6� � �&= 	 $ � $�� � 	 $ � $�� ?5? (8)

The effect of a particular swap can be evaluated faster using information from preceding itera-
tions. Let J

�
be the solution which is obtained by exchanging facilities � and � in solution J ,

then for swapping facilities � and 	 , with =�A�� D 	 H
	 A �8D �*H ��� ? the move can be evaluated in
constant time:

	 = J � D� D 	 ? � 	 = J/D �8D �8? 
 = ����� � ����� 
 �6���
�
����� ? �&= 	 $ � $�� � 	 $ � $�� 
 	 $ � $�� � 	 $ � $�� ?

= ���� � ���� 
 ���5�
�
��;� ? �&= 	 $�� $ � � 	 $���$ � 
 	 $���$ � � 	 $�� $ � ? (9)

The simplest local search algorithm based on the above described neighborhood is iterative im-
provement, in the following referred to as 2-opt. Iterative improvement can be implemented
using a first-improvement or a best-improvement pivoting rule. While in the first case an improv-
ing move is immediately performed, in the second case the whole neighborhood is examined
and a move which gives the best improvement is chosen. Best-improvement 2-opt for the
QAP benefits from the fact that the effect of exchanging two facilities can be calculated fast
using the information of previous iterations (see Equation 9); the first iteration is of complexity� = ���6? , while the subsequent iterations can be done in

� = � � ? . With first-improvement 2-opt
usually more moves have to be performed to reach a local minimum and every complete neigh-
borhood scan is of

� = � � ? . Yet, first-improvement algorithms can be executed faster if only a
limited number of iterations are performed or additional techniques like the use of don’t look
bits [5] are applied. Additionally, by examining the neighborhood in random order, different
local optima may be obtained also when starting from the same initial solution.

A variable depth local search algorithm was proposed by Murthy, Pardalos, and Li [41, 44]
and it was shown to be PLS-complete [25] (PLS is a particular complexity class for local search
algorithms, where PLS is the class of local search algorithms for which each local search step
requires polynomial time, but it is not specified how many exchange steps they take to reach a
local optimum). PLS completeness was also shown for a 2-opt local search algorithm for the
QAP [49].

�
If both matrices � and � are symmetric with a null diagonal, the formula can be simplified using the fact that

( 2���� ( � 2 and � �"!#�%$ � � �%$&�"! .
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4 Metaheuristic approaches to the QAP

A major disadvantage of local search is that it may get stuck in poor quality local optima of the
search space. To improve the performance of local search, metaheuristics have been proven as
extremely sucessful for the QAP and for a wide variety of other combinatorial problems. In this
section we present an overview over the available metaheuristic approaches to tackle the QAP.
Because it is infeasible to describe all the algorithms in detail, we proceed as follows: for each
metaheuristic implemented in the Metaheuristic Network we describe one particular approach
in some detail. � For the other approaches we only give some pointers to the literature and refer
the reader to the related articles for further details.

4.1 Simulated Anealing

Simulated Annealing (SA) was one of the first available metaheuristics. Therefore it is not
astonishing that it was also the first one to be applied to the QAP by Burkard and Rendl in
1984 [10]. Following this implementation, some few others were proposed and currently the
one due to Conolly [13] appears to be the best performing. Conolly compared a large number
of different neighborhood examination schemes from random to sequential ones and many dif-
ferent types of annealing schedules. The final SA algorithm has a quite particular shape. First,
it uses a sequential search of the neighborhood using a fixed ordering. The advantage of such
a scheme is that especially at low temperatures one can assure that the whole neighborhood is
searched. A second particularity is that the SA was found to perform best using a fixed tem-
perature! Still the optimal temperature remains to be fixed. To this aim, Conolly proposed a
scheme of how to adapt automatically the temperature during the run of the algorithm.

An additional SA approach for the QAP was proposed earlier by Wilhelm and Ward [65].
The tradeoff between the computation time and the solution quality � taken by (several) short
SA runs within a fixed time budget � (given time � , one can run �  � times a short SA), is
investigated by Laursen [30]. Thonemann and Bölte have proposed an improved SA algorithm
for the QAP. Finally, also threshold accepting, a metaheuristic closely related to SA, was applied
to the QAP by Nissen and Paul [43].

4.2 Tabu Search

Probably the best known tabu search algorithm for the QAP is the robust tabu search (RoTS)
algorithm of Taillard [59]. This algorithm is based on the 2-opt best-improvement local search
algorithm we have described in the previous section. As tabu attributes, the algorithms uses
assignment of facilities to specific objects, that is a tabu attribute �;= � D � ? refers to the fact that it
is forbidden to assign facility � to location � .

In RoTS a random solution is chosen as the initial solution. At each iteration � , the best, non-
tabu solution of ��= J � ? (the neighborhood of the current solution) is chosen as the new solution,
even if it is worse than the current solution. A neighboring solution that places facilities �

�
Here we assume that the reader is familiar with all the metaheuristics.

10



and � on locations � and � , respectively is tabu, if in the past � � iterations local search moves
were done that removed facility � from location � and facility � from location � . Here, � � is
a parameter called tabu tenure or tabu list length. This tabu condition is only overridden if
such a move would lead to a new best solutions since the start of the search; this latter rule
implements the so called aspiration criterion. RoTS has one additional rule which introduces
a type of diversification mechanism to the local search and which is important to achieve very
good computational results in the long run: If a facility � has not been placed on a specific
location � during the last � iterations, any move that does not place facility � on location � is
forbidden. In fact, in such a situation the algorithm forces to place a facility on one particular
location.

Certainly, the performance of RoTS depends strongly on the parameter settings. Taillard
proposed the following parameters: the tabu tenure � � is chosen randomly during the search
from the interval

� � E�� � � DGB E#B � � � (in fact, a new random value for � � is chosen every
� E � � �

iterations). This random choice of a tabu list length from a specific interval is actually the
reason for calling this algorithm robust tabu search, because the author claimed that this would
make the algorithm more robust with respect to a particular choice of � � . The second parameter,
� , has to be chosen larger than the size of the neighborhood. Here, good settings appear to be
in the range from

� � � � and ��� � � [59, 60].

There exists a variety of other tabu search implementations for the QAP. The first such im-
plementation is due to Skorin-Kapov in 1990 [50]. Some extensions of this early tabu search
algorithms were proposed again by Skorin-Kapov in [51]; this research direction also includes
a massively parallel tabu search implementation [12]. A particularly interesting tabu search
variant, the reactive tabu search (RTS), was proposed by Battiti and Tecchiolli [3]. The main
idea of RTS is to use the search history to dynamically adapt the tabu tenure during the run of an
algorithm. In addition, the RTS uses a diversification mechanism based on iteratively applying
a number of random moves if the search is deemed to be stuck.

A comparison of RoTs, RTS, strict tabu search algorithms and additionally a genetic hybrid
algorithm (described below) is found in [60].

4.3 Iterated Local Search

A first application of iterated local search (ILS) to the QAP is reported in [54]. To apply ILS to
the QAP four procedures have to defined. The role of the procedures is to (i) generate an initial
solution, (ii) implement a local search algorithm, (iii) implement a solution perturbation, and,
(iv) implement an acceptance criterion. Several variants of ILS algorithms, which mainly differ
in the type of acceptance criterion chosen but also include population-based extensions, were
presented in [54]. Here, we only give the details of a “basic” ILS approach.

This basic ILS starts from a random initial solution.

For the local search a first-improvement 2-opt algorithm, as described in Section 3 was used.
To avoid that in each local search iteration the full neighborhood has to be searched, a technique
was adopted that is called don’t look bits; originally, don’t look bits were proposed to speed
up local search algorithms for the TSP [5, 38]. When applied to the QAP, a don’t look bit
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is associated with every item. When starting the local search, all don’t look bits are turned
off (set to 0). If during the neighborhood scan for an item no improving move is found, the
don’t look bit is turned on (set to 1) and the item is not considered as a starting item for a
neighborhood scan in the next iteration. Yet, if an item is involved in a move and changes
its location, the don’t look bit is turned off again. The don’t look bits restrict the attention to
the most interesting part of the local search where still further improvement can be expected.
Hence, after a solution perturbation, which is described in the next paragraph, only the don’t
look bits of items which change their location due to the mutation are reset to 1. Together with
this resetting strategy of the don’t look bits, the speed of the first-improvement local search
could be increased considerably.

The solution perturbation exchanges � randomly chosen items. This corresponds to a random
move in the � -opt neighborhood. To make the particular choice of the kick-move strength, i.e.,
the value of � , more robust, a scheme for changing � as used in variable neighborhood search
was adopted [24].

In the basic version of the ILS the Better = J D�J � �2? acceptance criterion was used. It is defined
as follows:

� � Better = J/D�J � � ? �
��� �� J

� � if . $ � � � . $
J otherwise

(10)

This acceptance criterion actually implements a randomized descent in the space of locally opti-
mal solutions. However, experimental results in [54] suggest that with other acceptance criteria,
which allow also moves to worse local optima, yield better performance than Better = � D � � � ? .

4.4 Ant Colony Optimization

When applying ant colony optimization (ACO) to the QAP, first we have to define a solution
construction mechanism and to decide how pheromones should be used. Here we present the
details of how ����� – �
	 � Ant System ( ��� AS), a particular ACO algorithm, is applied
to the QAP. When applying ��� AS to the QAP, the pheromone trails � �
 correspond to the
desirability of assigning a facility � to a location � . For the solution construction, it is convenient
to use a preordering of the facilities (or, equivalently, the locations) and assign facilities in the
given order. Then, at each construction step an ant probabilistically decides on which location
the next facility should be put. These construction steps are then repeated until a complete
assignment is obtained.

In ��� AS, at each construction step, ant � first randomly chooses a facility � among those
not yet assigned, and then places it on a free location � with a probability given by:

	 ��� = � ? � � �
 = � ?� � %� �7 � � � = � ? if � K � �� D (11)

where �
��

is the feasible neighborhood of ant � , that is, the set of locations that are not yet
assigned a facility.

12



Once all ants have constructed a solution, the pheromone trails are updated according to

� �
 = � 
 B ? � � � � �
 = � ? 
 	 � best�

(12)

	 � best��
is defined as

	 � best�
 �
��� �� B

 . best$ if facility � is assigned to location � in solution J best

� otherwise
(13)

where . best$ is the objective function value of J best. J best may be either the iteration-best

solution J ib, or the best solution found during the run of the algorithm, the global-best solution
J gb. Hence, if in the best solutions facilities are often put on specific locations, these couplings
will have a high amount of pheromone. A judicious choice in the use of either J ib or J gb

for the pheromone trail update may easily help to improve the algorithm’s performance. In
general, best results are obtained if the frequency of choosing J gb increases during the run of
the algorithm [55, 57]. Additionally, during or after the pheromone update one has to ensure
that the pheromone trail strength respects the lower ( � ����� ) and the upper ( � ���	� ) pheromone trail
limits that are used by ��� AS to avoid search stagnation (see [55, 57] for details). If after the
pheromone update we have � �
�
 � ���	� , we set � ��!� � ���	� ; analogously, if � �
 � � ����� , we set� �
>� � ����� .

Additionally, ��� AS uses an occasional re-initialization of the pheromone trails to � ���	� to
increase the search diversification. For a detailed description including parameter settings etc.
we refer to [55, 57]

There exist a number of other applications of ACO algorithms to the QAP. These include the
application of ant system, the first ACO algorithm, by Maniezzo, Colorni and Dorigo [36], an
extension of this application by Maniezzo and Colorni [35], the ANTS algorithm of Maniezzo [34],
the FANT algorithm by Taillard and Gambardella [61] and an ant algorithm by Gambardella,
Taillard, and Dorigo [22] (yet, this algorithm does not fall into the framework of ACO, because
it does not use solution construction).

For a short overview if the different existing ACO algorithms we refer to the paper by Stützle
and Dorigo [56], where also an experimental comparison of some of the algorithms including
the RoTS algorithm can be found.

4.5 Evolutionary Algorithms

A number of different evolutionary algorithms, mostly based on genetic algorithms were imple-
mented for the QAP. During a long time, the most prominent of the approaches was the genetic
hybrid (GH) approach by Fleurent and Ferland [19]. They adapt a genetic algorithm to the QAP
by using a special crossover operator and the mutation is replaced by a short run of a tabu search
algorithm (similar to the RoTS, but with fixed tabu tenure).
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The crossover operator, originally proposed by Tate and Smith [62] for a pure genetic algo-
rithm, takes two solutions and generates a new one as follows. First, all the objects that are
assigned the same location in both parent solutions are directly copied to the new (child) solu-
tion. In a second step, locations that are still free are assigned objects. Actually this second step
takes place in two sub-steps. In the first sub-step, unassigned locations are scanned from left to
right. For an unassigned location, if possible, one of the two objects is assigned at random that is
in this same location in the parent solutions; if this is not possible, because the objects already
occur in the solution, the location is left free. In the second sub-step, finally, the remaining
objects are assigned randomly to the free locations.

After a new solution is generated, this solution is improved by a short RoTS run and the best
solution found during the local search is returned.

Since in the original paper not all parameters are specified, we rather present the settings
chosen by Taillard in his implementation of the GH: For instances up to � � � � , � � � solutions
are used, for larger instances a constant number of 100 solutions is used. The algorithm is
initialized with random solutions that are immediately improved by the RoTS, which is run
for 
 � � steps. At each iteration two new solutions are generated and the two worst ones are
removed. For the selection to the crossover a rank-based selection is done, where the � th worst
solution has a probability of

� �&= 	 � � ?
 	 �&= 	 � B ? of being selected.

In [60] a re-implementation of GH was compared to several tabu search variants and it was
shown that the GH performed particularly well on structured QAP instances like those of classes
(iii) and (iv) described in Section 2.

There are several other approaches for the QAP which are based on evolutionary algorithms.
These include standard genetic algorithms without including local search [62], parallel genetic
algorithms [7, 40], evolutions strategies [42], and genetic local search algorithms in the spirit
of GH [39]. The probably best performing variant of evolutionary algorithms is the memetic
algorithm proposed by Merz and Freisleben [39].

4.6 Other metaheuristic implementations for the QAP

There are number of applications of other metaheuristics to the QAP. Guided local search was
applied by Voudouris in his PhD thesis [63]. A deterministic local search approach, based
on a tabu search, with diversification features was applied to the QAP by Kelly, Laguna, and
Glover [27]. Using a deterministic local search has the advantage that only one single run needs
to be performed to evaluate the algorithm, but this may also cause poor and not very robust
behavior.

Results for applying GRASP to the QAP are presented in [33]; this algorithm seems to be
outperformed by current state-of-the-art algorithms. A constructive multi-start algorithm that
exploits a memory on the past search process for the solution construction was presented by
Fleurent and Glover [20]. Finally, a scatter search algorithm is presented by Cung, Mautor,
Michelon, and Tavares [14]; this algorithm obtained very good results with a local search based
on short runs of a tabu search algorithm.

Despite the large number of metaheuristic approaches, no systematic comparison of state-of-
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the-art algorithms for the QAP is available. Early comparisons include comparative tests of a
simulated annealing and a tabu search algorithm [4], comparisons of a number of different early
approaches to the QAP [37], and the comparative study of Taillard [60]. Regarding the most
recent implementations, only partial comparisons are available [22, 39, 56, 57, 54]. Therefore,
the research on the QAP in the context of the Metaheuristics Network has the potential to
provide a systematic comparison of highly performing metaheuristics for the QAP.

5 Conclusions

In this article we have given an overview of existing algorithmic approaches to tackle the QAP.
The best performing algorithms for the QAP are currently those based on tabu search and hy-
brid algorithms that typically combine a mechanism to generate initial solutions for a local
search procedure with powerful local search engines. For the generation of starting solutions,
typically genetic algorithms, ant colony optimization, or iterated local search are used. Crucial
for the performance of these hybrid algorithms is to find a good balance between the degree of
diversification obtained by the solution generation mechanism, the solution quality returned by
the local search and its speed (the speed determines strongly the frequency of applying local
search).

When comparing the computational results obtained with the different metaheuristics, a strik-
ing fact is that the relative performance of these metaheuristics depends very much on the par-
ticular instance class to which they are applied. The current state-of-the-art suggests that tabu
search algorithms are particularly successful on instances with essentially no strong structure,
while the iterative restart type metaheuristics like iterated local search, ant colony optimization,
and genetic algorithms are particularly successful on more structured QAP instances.
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[24] P. Hansen and N. Mladenović. An introduction to variable neighborhood search. In
S. Voss, S. Martello, I.H. Osman, and C. Roucairol, editors, Meta-Heuristics: Advances
and Trends in Local Search Paradigms for Optimization, pages 433–458. Kluwer, Boston,
1999.

[25] D.S. Johnson, C.H. Papadimitriou, and M. Yannakakis. How easy is local search? Journal
of Computer System Science, 37:79–100, 1988.

[26] T. Jones and S. Forrest. Fitness distance correlation as a measure of problem difficulty for
genetic algorithms. In L.J. Eshelman, editor, Proceedings of the Sixth International Con-
ference on Genetic Algorithms (ICGA’95), pages 184–192. Morgan Kaufmann Publishers,
San Francisco, CA, USA, 1995.

[27] J.P. Kelly, M. Laguna, and F. Glover. A study of diversification strategies for the quadratic
assignment problem. Computers & Operations Research, 21:885–893, 1994.

[28] T.C. Koopmans and M.J. Beckman. Assignment problems and the location of economic
activities. Econometrica, 25:53–76, 1957.

[29] G. Laporte and H. Mercure. Balancing hydraulic turbine runners: A quadratic assignment
problem. European Journal of Operational Research, 35:378–381, 1988.

[30] P.S. Laursen. Simulated annealing for the QAP – optimal tradeoff between simulation
time and solution quality. European Journal of Operational Research, 69:238–243, 1993.

[31] E.L. Lawler. The quadratic assignment problem. Management Science, 9:586–599, 1963.

[32] Y. Li and P.M. Pardalos. Generating quadratic assignment test problems with known
optimal permutations. Computational Optimization and Applications, 1:163–184, 1992.

17



[33] Y. Li, P.M. Pardalos, and M.G.C. Resende. A greedy randomized adaptive search proce-
dure for the quadratic assignment problem. In P.M. Pardalos and H. Wolkowicz, editors,
Quadratic Assignment and Related Problems, volume 16 of DIMACS Series on Discrete
Mathematics and Theoretical Computer Science, pages 237–261. American Mathematical
Society, Providence, Rhode Island, USA, 1994.

[34] V. Maniezzo. Exact and approximate nondeterministic tree-search procedures for the
quadratic assignment problem. INFORMS Journal on Computing, 11(4):358–369, 1999.

[35] V. Maniezzo and A. Colorni. The Ant System applied to the quadratic assignment problem.
IEEE Transactions on Data and Knowledge Engineering, 11(5):769–778, 1999.

[36] V. Maniezzo, M. Dorigo, and A. Colorni. The ant system applied to the quadratic assign-
ment problem. Technical Report IRIDIA/94-28, Université Libre de Bruxelles, Belgium,
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[55] T. Stützle. Local Search Algorithms for Combinatorial Problems — Analysis, Improve-
ments, and New Applications, volume 220 of DISKI. Infix, St. Augustin, Germany, 1999.
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