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Abstract. Two ant algorithms solving a simplified version of a typical
university course timetabling problem are presented – Ant Colony Sys-
tem and MAX -MIN Ant System. The algorithms are tested over a
set of instances from three classes of the problem. Results are compared
with recent results obtained with several metaheuristics using the same
local search routine (or neighborhood definition), and a reference random
restart local search algorithm. Further, both ant algorithms are compared
on an additional set of instances. Conclusions are drawn about the per-
formance of ant algorithms on timetabling problems in comparison to
other metaheuristics. Also the design, implementation, and parameters
of ant algorithms solving the university course timetabling problem are
discussed. It is shown that the particular implementation of an ant algo-
rithm has significant influence on the observed algorithm performance.

1 Introduction

The work presented here arises out of the Metaheuristics Network1 (MN) – a
European Commission project undertaken jointly by five European institutes
– which seeks to compare metaheuristics on different combinatorial optimiza-
tion problems. In the current phase of the four-year project, a university course
timetabling problem is being considered.

The University Course Timetabling Problem (UCTP) is a typical problem
faced periodically by every university of the world. The basic definition states
that a number of courses must be placed within a given timetable, so that the
timetable is feasible (may actually be carried out), and a number of additional
preferences being satisfied is maximized. There are also other timetabling prob-
lems described in the literature that are similar to UCTP. They include examina-
tion timetabling [1], school timetabling [2], employee timetabling, and others [3].
They all share similar properties and are similarly difficult to solve. The general
university course timetabling problem is known to be NP-hard, as are many
of the subproblems associated with additional constraints [4, 5, 2]. Even when

1 http://www.metaheuristics.org



restricting the interest to UCTP alone, it is difficult to provide a uniform and
generic definition of the problem. Due to the fact that course organization as
well as additional preferences may vary from case to case, the number and type
of soft and hard constraints changes. Hence, the algorithmic solutions proposed
for this problem usually concentrate on a particular subproblem.

Recently, in the course of the MN, five metaheuristics were evaluated and
compared on instances of a certain reduction of UCTP [6]. The metaheuristics
evaluated included: Genetic Algorithm (GA), Simulated Annealing (SA), Tabu
Search (TA), Iterated Local Search (ILS), and Ant Colony Optimization (ACO).
The MAX -MIN Ant System (MMAS) [7, 8] algorithm for the UCTP was
developed later as an approach alternative to the ACO (ACS in fact) developed
for the metaheuristics comparison. The purpose of this paper is to present how
ant algorithms are performing on such highly constrained problems as UCTP,
and analyze the impact of choosing a particular type of ant algorithm.

The remaining part of the paper is organized as follows: Section 2 defines the
reduction of the UCTP being solved. Section 3 presents the MAX -MIN Ant
System and the Ant Colony System used for solving the UCTP. Also the major
differences and similarities of the algorithms are highlighted. Section 4 presents
the experiments that were performed in order to evaluate the algorithms’ perfor-
mance. The results obtained by ant algorithms are also compared to the results
previously obtained by other metaheuristics [6]. Finally, Section 5 summarizes
the findings and presents the conclusions drawn.

2 UCTP – Problem Definition

For the purpose of evaluating metaheuristics in the course of the MN, a reduction
of UCTP has been defined [6, 8]. The problem consists of a set of n events E to be
scheduled in a set of timeslots T = {t1, . . . , tk} (k = 45, 5 days of 9 hours each),
a set of rooms R in which events can take place (rooms are of a certain capacity),
a set of students S who attend the events, and a set of features F satisfied by
rooms and required by events. Each student is already preassigned to a subset
of events. A feasible timetable is one in which all events have been assigned a
timeslot and a room so that the following hard constraints are satisfied:

– no student attends more than one event at the same time;
– the room is big enough for all the attending students and satisfies all the

features required by the event;
– only one event is taking place in each room at a given time.

In addition, a feasible candidate timetable is penalized equally for each oc-
currence of the following soft constraint violations:

– a student has a class in the last slot of the day;
– a student has more than two classes in a row (one penalty for each class

above the first two);
– a student has exactly one class during a day.



The infeasible timetables are worthless and are considered equally bad re-
gardless of the actual level of infeasibility. The objective is to minimize the
number of soft constraint violations (#scv) in a feasible timetable. The solution
to the UCTP is a mapping of events into particular timeslots and rooms.

2.1 Problem Instances

Instances of the UCTP were constructed using a generator written by Paechter2.
For the comparison being carried out by the MN, three classes of instance have
been chosen, reflecting realistic timetabling problems of varying sizes: small,
medium, large. They differ mostly by number of events being placed (100, 400,
400 respectively) and number of students attending these events (80, 100, 400
respectively). For details on the problem instance generator and exact param-
eters used to generate the three above classes of the UCTP problem see [6].
For further analysis of the performance of both ant algorithms, 10 additional
problem instances were used. Those instances have been proposed as a part of
the International Timetabling Competition3 (competition instances). The com-
plexity level of those competition instances may be considered to be between
the medium and large instances. Note, that all the instances used for the tests
are known to have a perfect solution, i.e. so that no hard or soft constraints are
violated.

3 Ant Algorithms to Be Compared

Ant Colony Optimization (ACO) is a metaheuristic proposed by Dorigo et al. [9].
The inspiration of ACO is the foraging behavior of real ants. The basic ingredient
of ACO is the use of a probabilistic solution construction mechanism based
on stigmergy. ACO has been applied successfully to numerous combinatorial
optimization problems including the quadratic assignment problem, satisfiability
problems, scheduling problems etc.

There exist at least two basic variations of the ACO metaheuristic – the
MAX -MIN Ant System initially proposed in [7], and the ACS which is de-
scribed in detail in [10, 11]. While the basic idea of operation is identical for both
of those variations, there are some differences. The main difference lies in the
way the pheromone is updated, which we will explain below.

Both ant algorithms used for solving the UCTP that are presented here, are
based on the general ACO framework [10, 12, 7]. They both have been shown to
be able to produce meaningful results for UCTP instances. The ACS has been
compared with other recent metaheuristics in [6], andMMAS has been shown
to significantly outperform the random restart local search algorithm in [8].
However, the performance of the two ant algorithms has never been compared
directly in order to assess the impact of the particular design and implementa-
tion. This paper provides more insight into the influence of the ant algorithm
architecture and its implementation on the performance.

2 http://www.dcs.napier.ac.uk/~benp
3 http://www.idsia.ch/Files/ttcomp2002/



Fig. 1. The construction graph that the ants traverse when building an assignment of
events into timeslots.

3.1 Differences and Similarities

The general mode of operation of both ant algorithms is very similar. At each
iteration of the algorithm, each of the m ants constructs a complete assignment
of events to timeslots. Following a pre-ordered list of events, the ants choose the
timeslot for the given event probabilistically, guided by two types of information:
heuristic information and stigmergic information. The stigmergic information is
in the form of a matrix of pheromone values τ : E × T → R+, where E is the set
of events and T is the set of timeslots. The pheromone values are an estimate
of the utility of making the assignment, as judged by previous iterations of
the algorithm. Fig. 1 presents the idea of the construction graph that the ants
traverse.

After all the events have been assigned to the timeslots, a deterministic
matching algorithm assigns the rooms and a candidate solution C is gener-
ated. The local search routine [8] is then applied to C. The local search routine,
which was provided separately in the course of the MN project, enables the
specification of a maximal number of steps and/or maximum running time.

The algorithms compared, differ in the way they use the existing information
(both stigmergic and heuristic), and the way they use local search. Also the rules
of updating the pheromone matrix are different.

The MAX -MIN Ant System introduces upper and lower limits on the
pheromone value. If the differences between some pheromone values were too
large, all ants would almost always generate the same solutions, which would
mean algorithm stagnation. The bounds on pheromone values prevent that. The
maximal difference between the highest and the lowest level of pheromone may
be controlled, and thus the level of search intensification versus diversification
may be balanced. The pheromone update rule becomes then as follows (for the
particular case of assigning events e into timeslots t):

τ(e,t) ←

{

(1− ρ) · τ(e,t) + 1 if (e, t) is in Cglobal best

(1− ρ) · τ(e,t) otherwise,
(1)

where ρ ∈ [0, 1] is the evaporation rate. Pheromone update is completed
using the following:



τ(e,t) ←







τmin if τ(e,t) < τmin,

τmax if τ(e,t) > τmax,

τ(e,t) otherwise.
(2)

The pheromone update value has been set to 1 after some experiments with
the values calculated based on the actual quality of the solution. The function q

measures the quality of a candidate solution C by counting the number of con-
straint violations. According to the definition ofMMAS τmax = 1

ρ
· g
1+q(Coptimal)

,

where g is a scaling factor. Since it is known that q(Coptimal) = 0 for the consid-
ered test instances, τmax was set to a fixed value 1

ρ
. The proper balance of the

pheromone update and the evaporation was needed, and this was controlled by
the scaling factor g. We observed that when g was too small, the evaporation
was faster than pheromone update, and pheromone levels even on the best paths
finally reached τmin. When the values of g were too large, the pheromone values
on the best paths grew faster than they evaporated and finally reached τmax,
where they were cut-off according to the MAX -MIN rule. It became appar-
ent that any value of the pheromone update that was close to τmax · ρ is just
as good. Experimental results supported this claim. Hence, we decided that for
pheromone update the constant was more efficient than the calculation of the
exact value.

In ACS not only the global update rule is used, but also a special local update
rule. After each construction step a local update rule is applied to the element
of the pheromone matrix corresponding to the chosen timeslot tchosen for the
given event ei:

τ(ei,tchosen) ← (1− α) · τ(ei,tchosen) + α · τ0 (3)

The parameter α ∈ [0,1] is the pheromone decay parameter, which controls
the diversification of the construction process. The aim of the local update rule
is to encourage the subsequent ants to choose different timeslots for the same
given event ei.

At the end of the iteration, the global update rule is applied to all the entries
in the pheromone matrix:

τ(e,t) ←

{

(1− ρ) · τ(e,t) + ρ · g
1+q(Cglobal best)

if (e, t) is in Cglobal best

(1− ρ) · τ(e,t) otherwise,
(4)

where g is a scaling factor, and the function q has been described above.
This global update rule is than very similar to the one used by MMAS with
the exception of not limiting the minimal and maximal pheromone level.

Another important difference between the implementations of the two algo-
rithms, is the way that they use heuristic information. WhileMMAS does not



use any heuristic information, the ACS attempts to compute it before making ev-
ery move. In ACS the heuristic information is an evaluation of the constraint vi-
olations caused by making the assignment, given the assignments already made.
Two parameters β and γ control the weight of the hard and soft constraint
violations, respectively.

The last difference between the two ant algorithms concerns the use of the
local search. In the case of MMAS, only the solution that causes the fewest
number of constraint violations is selected for improvement by the local search
routine. Ties are broken randomly. The local search is run until reaching a local
minimum or until assigned time for the trial is up – whichever happens first.
The local search in case of ACS is run according to a two phase strategy: if the
current iteration is lower than a parameter j the routine runs for a number of
steps s1, otherwise it runs for a number of steps s2. In case of ACS all candidate
solutions generated by the ants are further optimized with the use of local search.

Tab. 1 summarizes the parameters used by the two algorithms.

Table 1. Parameters used by the algorithms.

Parameter Name MMAS ACS

m number of ants
ρ pheromone evaporation

s(j) number of steps of the local search
τ0 value with which the pheromone matrix is initialized

τmax maximal pheromone level -
τmin minimal pheromone level -

α - local pheromone decay
β - weight of the hard constraints
γ - weight of the soft constraints
g - scaling factor

4 Performance of the Ant Algorithms

For each class of the problem, a time limit for producing a timetable has been
determined. The time limits for the problem classes small, medium, and large

are respectively 90, 900, and 9000 seconds. These limits were derived experimen-
tally. All the experiments were conducted on the same computer (AMD Athlon
1100 MHz, 256 MB RAM) under a Linux operating system. The ant algorithms
were compared against the best metaheuristics on those instances [6], which
were the Iterated Local Search and Simulated Annealing; also against a refer-
ence random restart local search algorithm (RRLS) [8], which simply generated
a random solution and then tried to improve it by running just the local search.
Since all algorithms were run on the same computer, it was easy to compare
their performance and a fair comparison could be achieved.



For the remaining competition instances, only the ant algorithms were
compared against each other and against RRLS. The running time on the same
computer was set to 672 seconds. The time limit has been calculated with the
use of the benchmark program provided by the organizers of the International
Timetabling Competition.

Tab. 2 presents the actual parameters used for running the ant algorithms.
The same parameters were used for all runs of both ant algorithms.

Table 2. Parameter settings used by the algorithms.

Parameter MMAS ACS

m 10 10
ρ 0.3 0.1

s(j) 10 000 000

{

50 000 j ≤ 10
20 000 j ≥ 11

τ0 3.3 10.0
τmax 3.3 -
τmin 0.019 -
α - 0.1
β - 3.0
γ - 2.0
g - 1010

The ant algorithms were tested on a set of instances of the UCTP as described
in Sec. 2.1. The files containing those instances as well as source code of the
algorithms and summary of the results may be found on the Internet4.

In case of the set of medium instances, the algorithms were run 40 times on
each. For the large instances the algorithms were run 10 times, and for the
competition instances, the algorithms were run for 20 independent trials.

Fig. 2 presents rank comparison of the results obtained for the set of five
medium instances by the ant algorithms and reference algorithms: Simulated
Annealing (SA) and Random Restart Local Search (RRLS). It is clear that
the SA performs significantly better than any of the ant algorithms and the
reference RRLS algorithm. It is however interesting to see that whileMMAS is
performing better than RRLS, the ACS produced solutions significantly inferior
to those of RRLS. These differences are significant at least at a p-value of 0.05
in a pairwise Wilcoxon test. Detailed results can also be found on 4.

Fig. 3 presents a similar comparison as Fig. 2, but for two large instances.
The results are however rather different. It may be said with high statistical
significance (p < 0.01) thatMMAS is performing best on these instances. ACS
is performing worse, and comparably well to the Iterated Local Search (ILS)
– the winner of the comparison in [6] on the problem. In this case both ant
algorithms beat the performance of RRLS. SA, which was very efficient in case

4 http://iridia.ulb.ac.be/~ksocha/ttantcmp03.html
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Fig. 2. Rank comparison of the results obtained by the two ant algorithms, leading
other metaheuristics (ILS and SA), and also random local search algorithm (RRLS)
on five medium instances of the problem. A non feasible solution is considered to be
worse than any feasible solution. Hence, the rank distribution may sometimes appear
as a one point distribution (single vertical line).

of medium instances failed to provide feasible timetables for the both large

instances (similarly to RRLS).

Fig. 4 presents the comparison of the performance of ant algorithms on
competition instances. There is no reference data available from other meta-
heuristics for these instances yet. We run the mentioned earlier RRLS algorithm
on these instances, but as it did not provide feasible solutions for any of the
instances, we did not include it in the comparison. Hence, the ant algorithms
are compared only among themselves. The results show statistically significant
better performance of MMAS in comparison to ACS. Note that Fig. 4 con-
tains also additional results obtained by the modified versions of the ACS and
MMAS algorithms, as described in Sec. 5.1.
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Fig. 3. Rank comparison of the results obtained by the two ant algorithms and leading
other metaheuristics (ILS and SA), and also random local search algorithm (RRLS) on
two large instances of the problem. A non feasible solution is considered to be worse
than any feasible solution. Hence, the rank distribution may sometimes appear as a
one point distribution (single vertical line). It is seen in case of SA, RRLS, and ACS
for both presented instances, and also for ILS on the first large instance.

5 Conclusions

Based on the results of comparison, it is clear that the two ant algorithms perform
differently. TheMMAS performs better than ACS on all instances tested. When
comparing the better of the two ant algorithms to other reference algorithms,
it becomes clear that for some classes of the UCTP problem, the ant algorithm
proves to be very efficient. While on medium instances of the problem, the SA is
significantly better thanMMAS, while on the large instancesMMAS beats
any current competitor.

The difference in performance of the two ant algorithms may be due to one
or more of the following factors:

– While MMAS does not use the heuristic information, the ACS uses it ex-
tensively. The improvement provided by the heuristic information does not
make up for the time lost on its calculation (which in case of the UCTP may
be quite high).

– The ACS has a different strategy in using local search thanMMAS. While
ACS runs the local search for a particular number of steps, theMMAS tries
always to reach the local optimum by specifying extensive number of steps.

– The MMAS uses local search to improve only one of the solutions gener-
ated by the ants, while the ACS tries to improve all the solutions generated.
While the approach ofMMAS may lead to discarding some good potential
solutions, the approach of ACS may mean that two (or more) very similar so-
lutions will be further optimized by local search, which may be an inefficient
use of time.
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Fig. 4. Rank comparison of the results obtained by the two ant algorithms (ACS and
MMAS) on ten competition instances of the problem. Also the performance of the
versions of those algorithms (NEWACS and NEWMMAS) modified as described in
Sec. 5.1 are presented.

5.1 Further Investigation

In order to check the hypothesis that due to the design choices made, the ACS
actually takes longer to run one iteration, we calculated the number of iterations
done by both algorithms. We counted the number of iterations of both ant
algorithms for 5 runs on a single competition instance. While the MMAS
performed on average 45 iterations, in case of ACS it was only 21.6. This shows
that in fact a single iteration of ACS takes more than twice the amount of time
of a singleMMAS iteration. Thus, it is most probable that the first and third
of the factors presented above influence the performance of the ant algorithm.

We found it interesting to investigate the topic further. Hence, we decided
to run some additional experiments. This time, we tried to make the features



of both algorithms as similar as possible, to be able to see which of the factors
presented above may be in fact the key issue. We modified theMMAS so that it
runs the local search on each solution generated by the ants. We also modified the
ACS features so that they resembled more the features of theMMAS. Hence,
we removed the use of heuristic information, and introduced the same parameter
for the use of local search as in case ofMMAS (10 000 000 steps). The results
shown in Fig. 4 clearly indicate that the performance of ACS has improved
significantly reaching almost the level of performance ofMMAS. Therefore, it
is clear that the key factor causing differences in the original ant algorithms was
the use of local search.

It is important to note that the new version ofMMAS performed best with
only one ant (this was the value used to produce the results presented in Fig. 4),
while the ACS obtained its best results with 10 ants. This discrepancy can be
explained by the inherent properties of the two types of ant algorithms. In case
ofMMAS the more ants are used in each iteration, the higher the probability
that some ants will choose exactly the same path, thus not exploring the search
space efficiently. In case of ACS – thanks to the local pheromone update rule –
each subsequent ant in one iteration is encouraged to explore a different path.
Thus, while adding more ants in case of ACS is theoretically advantageous, it is
not quite the same in case ofMMAS.

The results presented indicate that there is a large dependency of the partic-
ular design decisions on ant algorithm performance. Similar algorithms using the
same local search routine performed quite differently. The results also show that
well designed ant algorithm may successfully compete with other metaheuristics
in solving such highly constrained problems as the UCTP. Further analysis and
testing is needed in order to establish in more detail the influence of all the
parameters on ant algorithm performance.
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