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Abstract. This paper presents an attempt to find a statistical model
that predicts the hardness of the University Course Timetabling Problem
by analyzing instance properties. The model may later be used for better
understanding what makes a particular instance hard. It may also be
used for tuning the algorithm actually solving that problem instance.
The paper introduces the definition of hardness, explains the statistical
approach used for modeling instance hardness, as well as presents results
obtained and possible ways of exploiting them.

1 Introduction

Metaheuristics are used nowadays for solving numerous types of optimization
problems. However, they always have to be carefully tuned to the particular
problem they are to solve. This tuning is often done based on the assumption
that problem instances of similar size and similar structure pose similar difficulty
to solve them by a given (meta)heuristic algorithm. Hence, the algorithms are
run on a set of training instances that resemble the ones that the algorithm is
expected to solve later, hoping that it will ensure optimal performance.

Unfortunately, often, especially in case of constrained combinatorial opti-
mization problems, very similar problem instances in terms of size and structure,
prove not to be similar in difficulty. One of the problems that exemplifies such
behavior is the University Course Timetabling Problem (UCTP).

In this paper we try to define a measure of hardness (i.e. the difficulty of solv-
ing) for instances of UCTP. Based on this measure, we notice that very similar
instances (i.e. ones created with the same parameters for the instance genera-
tor) may vary significantly in their difficulty to be solved by a (meta)heuristic
algorithm.



Later, we try to show that in the case of UCTP, the hardness is an intrinsic
characteristic of an instance with respect to a given (meta)heuristic algorithm.
We show that based on the analysis of an instance and some statistics, it is pos-
sible to predict the hardness of an instance for a given algorithm with reasonable
accuracy without actually attempting to solve it. This predicted value may be
later used to understand better what makes one instance harder than another,
and also to tune the parameters of the algorithm, and hence allow to obtain
better results.

The remaining part of this paper is organized as follows. Section 2 describes
the UCTP. Section 3 explains the underlying idea and motivation for modeling
the instance hardness. Following that, Section 4 introduces the statistical model.
In Section 5 the performance of the model is presented and discussed. Eventu-
ally, Section 6 discusses the results obtained and indicates possible uses of the
hardness prediction model.

2 University Course Timetabling Problem

The problem used to illustrate the thesis of this paper, is the University Course
Timetabling Problem (UCTP) [1]. It is a type of constraint satisfaction problem.
It consists of a set of n events E = {e1, . . . , en} to be scheduled in a set of 45
timeslots T = {t1, . . . , t45} (5 days in a week, 9 time-slots a day), and a set of
j rooms R = {r1, . . . , rj} in which events can take place. Additionally, there
is a set of students S who attend the events, and a set of features F satisfied
by rooms and required by events. Each student attends a subset of events. A
feasible timetable is one in which all events have been assigned a time-slot and
a room, so that the following hard constraints are satisfied:

– no student attends more than one event at the same time;
– the room is big enough for all the attending students and posses all the

features required by the event;
– only one event is taking place in each room at a given time.

In addition, a feasible candidate timetable is penalized equally for each oc-
currence of the following soft constraint violations:

– a student has a class in the last slot of the day;
– a student has more than two classes in a row (one penalty for each class

above the first two);
– a student has exactly one class during a day.

The infeasible timetables are worthless and are considered equally bad re-
gardless of the actual level of infeasibility. The objective is to minimize the
number of soft constraint violations in a feasible timetable. The solution to the
UCTP is a mapping of events into particular time-slots and rooms.

The instances we use in our research come from a generator written by
Paechter3.
3 http://www.dcs.napier.ac.uk/~benp



3 Idea and Motivation

The initial motivation of the research presented in this paper comes from sub-
missions to the International Timetabling Competition4. While creating meta-
heuristic algorithms for solving the UCTP instances used in the competition, it
became obvious that although the instances are of similar size, the difficulty of
solving them varies greatly.

Based on this observation, we developed the hypothesis that the difficulty
of solving any given instance of UCTP is a function of some parameters of the
instance that are intrinsic to it, and more complex than just its size [2]. If this
hypothesis is true, it should be possible to define a hardness of an instance in
terms of some of its characteristics. It should also be possible to predict values
obtained by an algorithm just by looking at the instance.

We should make more precise here, what we mean exactly by the hardness
of an instance. In principle, all the instances of UCTP under investigation are
known to have at least one perfect solution. Hence, if we defined the hardness
as the measure of how close to 0 any instance can be solved, the hardness of all
those instances would be exactly the same. In our case however, the goal was
to solve the given instances as well as possible, but within a given time limit.
We will hence define the hardness of the instance as the quality of the solution
obtained within this time limit by a given algorithm. Also, as the results obtained
by a (meta)heuristic algorithm for a given problem instance tend to have some
variance, we will consider in our investigation only the mean of the obtained
values as the measure of hardness.

Following the hypothesis that the hardness depends on some intrinsic char-
acteristic of an instance, we decide to measure several different features of the
instances–the model’s explanatory variables or covariates. If we find the right
covariates, and if the hypothesis is true, the combination of covariates may be
used to create a regression model for instance hardness–that is, find the func-
tional relationship between the combination of covariates and the hardness of
the instance.

Considering the problem investigated, we chose to measure some summary
statistics of the instance to be used as covariates. Altogether there are 27 distinct
covariates that we initially consider as important for the regression model. Sec. 4
describes in more detail how the final subset of those has been chosen for the
final model.

For the purpose of choosing and fitting the model we used the results ob-
tained by MAX -MIN Ant System (MMAS) [3] designed particularly for this
problem [4]. MMAS is a version of Ant Colony Optimization (ACO) metaheuris-
tic initially proposed by Dorigo [5]. ACO has been in recent years widely used
for solving combinatorial optimization problems [6] also including constrained
satisfaction problems [7].

The final model chosen will obviously apply only to the results obtained by
our MMAS. Certainly, a comparison of models found for different algorithms

4 http://www.idsia.ch/Files/ttcomp2002/



may provide some information whether the same features of the instance make
it difficult for different algorithms. However interesting this topic might be, we
do not focus on it in this paper.

4 Statistical Model

4.1 Normal linear models

The task formulated in the previous section is the archetypal statistical problem
of regression. Among the large variety of models developed in the regression
context, the best known are linear models [8]. The formulaic description for the
i-th observation under a linear model is

yi =

p∑

j=1

βjxi,j + εi (1)

where yi is the observed response, xi,j ’s the covariate values for the i-th obser-
vation, βj ’s the model parameters and εi the error of the i-th observation.

The term linear refers to the fact that the parameters appear only linearly
in the predictor η(x, β) =

∑p

j=1
βjxi,j . This does however not mean that such a

model can only cater for linear influences of covariates. It is for example possible
to incorporate a covariate x in a linear and a quadratic term x2 if this seems
to be justified based on domain specific knowledge. Also possible are so-called
interaction terms, i.e. multiplicative effects between covariates. All a linear model
requires is for these terms to have a linear parameter. It is also common that
in a linear model the predictor acts on the same scale as the observation, by
which we mean that the function linking the predictor to the observation is the
identity (as has already been assumed in Eq. 1).

To complete a regression model, a distribution for the error terms has to
be specified. In normal linear models–also just called normal models–the εi are
assumed to be independent, identically distributed (i.i.d.) according to N(0, σ2).

4.2 Casting our problem into a normal model framework

To apply the normal model approach to a given problem, one has to ensure that
the underlying modeling assumptions are met. We will do so in this section for
the prediction of hardness based on instance characteristics.

The first observation for our data is that we are confronted with a more
complex problem than in Eq. 1. Namely, we can separate the error into two terms.
One being the standard modeling error associated with a given realization of the
covariates. The other being a measurement error of the response as different
metaheuristic runs will–on the same instance–yield different results. This can be
formulated as

yi,k =

p∑

j=1

βjxi,j + εi + ε̃i,k (2)



where yi,k is the k-th measurement on the i-th instance, xi,j ’s the covariate
values for the i-th observation, βj ’s the model parameters, εi the error of the
i-th instance and ε̃i,k the measurement error for the k-th measurement on the
i-th instance.

This kind of model is known as a linear mixed effects model in the literature
[9]. Instead of following this approach, we circumvent the problem of two different
error terms by averaging out the measurement error ε̃i,k. For this, we have 15
runs on every instance and use the mean value as response. This allows us
to stay within the normal model framework. It means a loss of efficiency in
the modeling process as we throw away information that could otherwise be
utilized, but eliminates the measurement error that in the algorithm under study
is fairly large (see next paragraph). So, the model for the mean values has smaller
variation in the error term which opens up the chance of better predictions.

To assess whether averaging over 15 instances is enough to neglect the mea-
surement error in the further treatment of the data we have 50 runs on a par-
ticular instance and calculate the means for 25 random samples of size 15. The
mean for all 50 values was 150, while the upper and lower quantiles of the means
based on 15 runs were 145 and 155 respectively with 3 outliers being further
away. To put the mean values in relation to the individual measurements and
to give an idea of the measurement error itself, we note the lower and upper
quantiles for the 50 runs to be 135 and 160.

So, while there is still some variation, this spread is small enough to continue
with our approach, noting that the remaining measurement error will be a lower
bound on the achievable prediction quality. This particular instance was chosen
as the algorithm could only achieve relatively high values on it and a consistent
observation over all instances was that the variance of the measurement error
increases with the response value.

This heteroscedasticy of the measurement errors is the inspiration for the
second concern we have fitting the data with a normal model: the distribution
assumption for the remaining error term. As mentioned in Sec. 4.1 the εi’s are
assumed to be i.i.d. ∼ N(0, σ2). Two things can go wrong with this. The errors
may not be normally distributed or they may not have constant variance. In
particular, the error variance may be a function of the response value as was
observed for the measurement error, where it grew with the response. Unfortu-
nately, with the εi’s we are not in a position to test this a priori. It will only be
possible to assess the appropriateness of the distribution assumption a posteriori

via diagnostic tools on the residuals of the fitted model. We will do this in Sec. 5.

We mention two techniques that deal with such deviations from the normal
model. The first is to achieve constant variance by transforming the response
to a different scale, e.g. using the log function on it before fitting the model
[10]. As we will implement this, we shall explain the rational behind such a
transformation. If we assume the error not to be an additive term, but rather
a fraction of the response, taking the log will transform a multiplicative error
into an additive one that fits into the normal model framework. If the problem



lies deeper, i.e. a non-normal error distribution, Generalized Linear models (for
example with a Poisson distribution) have to be used [11].

4.3 Fitting the Model

This section deals with the non-mathematical side of model fitting. By mathe-
matical model fitting we mean the process of determining the parameter values
β when all other properties of the model are fully specified. The mathematics be-
hind this process are simple as for normal models minimizing the log-likelihood
(which is the fitting approach for more general models) coincides with minimiz-
ing the sum of squares (SSQ) of the errors.

What we concern ourselves with, is the process of selecting a subset of the
available covariates to form the final model [12]. The need for covariate selection
arises from the purpose for which we model: prediction. We have a training set
of 120 new instances generated from the range of input variables to the instance
generator that were used for the competition instances. If we fit the model with
all covariates, we get a lower bound on how good we can fit this set, but the
prediction quality will be poor as we have over-fitted our data, see Table 1.
Therefore, the following procedure has been implemented in S-Plus for both the
model with unchanged response and the one with the log-response.

Simulated Annealing [13] is used to determine a good set of covariates. This
is done as the search space–especially when interactions are included–gets too
large for enumeration. Standard covariate selection methods such as forward and
backward selection are greedy methods that can get stuck in bad local optima.
As search space we have all possible subsets of the full covariate set. We choose
a random starting location, and the neighborhood is defined by either randomly
dropping or adding a covariate. Because of the expensive fitness evaluation, we
can only run a moderate number of iterations.

For the fitness evaluation of a solution, 6-fold cross-validation is used on the
training set, i.e. it is randomly divided in 6 sets of 20 instances, and then 5 sets
are used to fit the current model and the remaining set is used to assess the
prediction power by recording the error SSQ for this 6th set. This is repeated
for leaving out all sets in turn. The fitness for the current solution is the average
over the 6 values. One modification is put in place when the predicted value
for an instance is negative: negative predictions are set to 0 before we calculate
the error term. This is reasonable as a negative value in the prediction can be
interpreted as an instance that is solved to optimality in less time than allowed.

The Simulated Annealing engine is run 25 times and for every run we record
the covariates included in the final model. Then we drop those covariates that
were included only 3 or less times in these final models. On the remaining set
of covariates we restart the whole procedure leading after another 25 runs to a
second set of covariates that are to be dropped for good. In both models this
turns out to be sufficient to end up with a stable set of covariates, as Simulated
Annealing on the remaining covariates did not drop anymore.



5 Results

With the above approach we arrive at two final models: one for the unchanged
response and the other for the log response. Two reasons let us focus on the
log model. Firstly, analytical plots for the residuals indicate that the log model
meets the normality assumption better. Secondly, we observe that the fitting
criterion is different for the two models, with the log model pursuing the–in our
opinion–more reasonable goal.

We explain this difference briefly. Both models were fitted such that they
minimize a fitness function based on the error SSQ, i.e. on the gap in absolute
values between prediction and observation. But since the modeled values are on
different scales, this leads to different fitting goals on the original response scale.
The model with unchanged response controls the spread around the observation
in terms of absolute value. In contrast, the error for the log response enters the
model on the original scale as prediction×eεi , where for small errors eεi ≈ 1+εi

holds. So, the log response model minimizes approximately the squared sum of
percentage errors.

Another observation of interest in this context is that using squared error
values leads to a worse average error in favor of limiting extreme errors. In the
case of a normal distribution, which we assume for our errors, the so calculated
standard deviation σ has a ready interpretation as signifying a confidence level
of approximately 70%.

Table 1 summarizes the results of the models fitted on the log response. The
first two are the models with all covariates included (Full) and the model reduced
by Simulated Annealing (Final). The last model (Interaction) will be introduced
later. In the final model we dropped 1 more term after the automated selection,
as it was statistically insignificant. As a test set, we used the 20 competition
instances.

We see that the full model fits the training set better but its prediction power
is worse. For both models the prediction error is larger than the error on the
training set, and clearly larger than the predicted error σ̂ based on the cross-
validation. We note that this prediction is biased and will always under-estimate
the real error. The average percentage errors have been included as they are
more intuitively understandable, but we point out that optimization has been
carried out with respect to σ-values.

We will now discuss the final model and its remaining covariates in more
detail. Table 2 gives the 8 covariates for this model, the covariate parameters
and their values on the the response scale, i.e. eβi . The covariate values–except for
slack–have been normalized, i.e. were transformed to have 0 mean and variance
1. This allows a direct comparison of the effect size independent of the scaling
of the covariates. Slack was not subjected to this procedure as it is a discrete
covariate with only two levels.

Before we can interpret the covariates we have to introduce a graph closely
related to the UCTP. Events are the nodes in this graph and they are joined
by an edge if the events cannot be placed in the same time-slot. There can be
two reason for an edge: a student who attends both events or the two events



Table 1. Summary of the errors in the 3 models fitted on log(response). Values are
the %-errors between prediction and observation on the original scale.

Training set Test set

Model parameters σ Av. Error σ̂ σ Av. Error

Full 27 18.0 13.2 25.7 28.4 21.8
Final 9 19.4 13.8 21.0 27.2 19.8
Interaction 18 17.2 12.4 21.0 22.0 16.6

Table 2. Final set of 8 covariates used by the regression model ordered by their level
of importance.

Name Coefficient Effect on Response scale

av. weighted event degree 1.39 4.02
av. event size -1.15 0.32
slack -1.22 0.29
av. weighted room options -0.63 0.53
sd. events per room 0.62 1.85
av. event degree1 0.51 1.66
sd. event degree2 0.27 1.31
no of 1-option events 0.20 1.22

need both the same room. The original graph (referred to as 1) comprises only
student conflicts while the second graph (referred to as 2) includes room conflicts
as well.

Four effects in the model are related to the node degree in this graph. The
weighted event degree (the weights are the number of students that cause a given
edge) and the ordinary event degree in graph 1 increase the prediction as they
grow. The effect of the weighted event degree seems to be larger but in fact it
is almost perfectly correlated with the average event size. This means that in
a normal instance these two effects will have to be subtracted giving a much
smaller effect for the average weighted event degree. Dropping either one of the
correlated terms and hoping that the other would absorb the effect of both was
considered but led to a worse fit. The last effect referring to this graph is the
standard deviation in event degree in graph 2. The problem becomes harder as
the spread increases.

Three effects are related to the room constraints. Most prominently, the
average weighted number of room options per event (the square root was used
for weighting to put emphasis on small numbers) is negatively correlated with
the hardness. Positively correlated is the number of events that have only one
room options. We recorded them as they form a special subset of events, causing
additional edges between graph 1 and graph 2. The third covariate measures the
standard deviation in the number of possible candidate events from the room’s
point of view. The more spread out this distribution is the harder the problem.



The last effect in the model-and the most decisive-is the factor variable slack,
which indicates whether 40 time-slots are a lower bound for the placement of the
events, i.e. whether the number of rooms times 40 equals the number of events.
If slack is present, we can expect the problem to be substantially easier. For
this statement-as for all others made in this section-we assume a ceteris paribus

situation, i.e. that we can change 1 covariate at a time keeping the others fixed.
Obviously, this assumption is hard to meet in a real problem and therefore this
effect analysis has to be seen with this limitation in mind.

After isolating these 8 covariates, we included them and all 2nd order in-
teractions in another normal model. This model was then pruned according to
a standard statistical criterion (AIC stepwise selection, taken from the MASS
library [10], which is a greedy search method that trades off the log likelihood
of a model against the number of covariates used). We note that this criterion
optimizes prediction power only indirectly. The results for this model can be
seen in Table 1. It achieves a better fit on the training set than the full model
and a better prediction than the final model. The gap between the predicted
error and the observed error has markedly decreased. This clearly indicates that
further research should be directed towards more complicated models.

6 Conclusions

The paper presents a successful attempt to predict the quality of the solutions
found by the MAX -MIN Ant System for the University Course Timetabling
Problem. We have attempted to predict the hardness of a complex constrained
optimization problem for a metaheuristic algorithm. Without making any ex-
plicit assumptions about the inner operation of the algorithm (i.e. we treated it
as a black box algorithm), we have managed to develop a reasonably simple re-
gression model allowing to predict the competition results with an average error
of less than 17%.

The statistical model we developed may be further exploited in at least two
distinctive ways. One option is to use the knowledge acquired in order to modify
the algorithm and improve its performance. This may include exploiting the
understanding of important covariates, or exploiting the estimated hardness. The
second option is to use the model for sensitivity analysis of the instance. When
considering the UCTP as a real world problem, it may be possible to change
some characteristics. Based on the model, the changes with the best marginal
benefit can be determined (e.g. should one more room be made available for the
courses or is it better to fit the existing rooms with additional features).

6.1 Future Work

In the future we plan to investigate alternative model choices that we left for
now unexplored. This includes linear models with a more systematic interaction
investigation, generalized linear models and non-linear models.



Independently, we would like to investigate in more detail, how the predicted
hardness may be used for improving the performance of the algorithm. Also, we
would like to develop similar models for other algorithms solving the UCTP. This
way we could see if it is possible to maintain this level of prediction accuracy
for the other algorithms, and also if the covariates that are important for one
algorithm are similarly important for the others. This research will show whether
the concept of hardness can be to some extend generalized, i.e. can be made less
algorithm-dependent.
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